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regression problem with imprecise data:

We investigate the relationship between the variables Xi ∈ X and Yi ∈ R (where
X can be any set).

We would like to describe this relationship by means of a function f ∈ F , where
F is a particular set of functions f : X → R (e.g., the set of all linear functions).

The regression problem consists in trying to identify the function f ∈ F mini-
mizing in some sense the (absolute) residuals Rf ,i := |Yi − f (Xi)|.

However, instead of precise data Vi := (Xi ,Yi) ∈ X × R, we can often observe
only imprecise data V ∗

i ⊆ X × R, and therefore (for each function f ∈ F) the
residuals Rf ,i are imprecisely observed as well.

regression as a decision problem:

We choose a nonparametric probabilistic model: P is the set of all probability
measures such that (V1,V

∗
1 ), ... , (Vn,V

∗
n ) are independent and identically dis-

tributed and satisfy P(Vi ∈ V ∗
i ) ≥ 1− ε (where ε ∈ [0, 1] is fixed).

We try to identify the function f ∈ F minimizing the p-quantile of the distri-
bution of Rf ,i (where p ∈ (0, 1) is fixed): the main reason for the choice of the
p-quantile (instead, e.g., of a moment of the distribution of Rf ,i) is that it can
be estimated even under the nonparametric model P .

The regression problem can be expressed as a decision problem:

• the set of possible decisions is F ,

• the set of possible “states of the world” is P , and

• the loss associated to f ∈ F and P ∈ P is the p-quantile Qf (P) of the
distribution of Rf ,i under P .



likelihood-based imprecise regression:

The observed (imprecise) data V ∗
1 = A1, ... ,V

∗
n = An induce the (normalized)

likelihood function lik : P → [0, 1] with lik(P) = P(V ∗
1 =A1,...,V

∗
n =An)

supP′∈P P ′(V ∗
1 =A1,...,V ∗

n =An)
.

We use lik to reduce the model P to P>β := {P ∈ P : lik(P) > β} (where
β ∈ (0, 1) is fixed).

The imprecise value of the loss Qf (P) becomes Cf := {Qf (P) : lik(P) > β},
which has a simple geometrical interpretation:

• B f ,q := {(x , y) ∈ X × R : |y − f (x)| < q} is the open band of width 2 q
around f ,

• B f ,q := {(x , y) ∈ X × R : |y − f (x)| ≤ q} is the closed band of width 2 q
around f ,

• Cf consists of all q ∈ [0, +∞) such that the closed band B f ,q is wide
enough to intersect at least k + 1 imprecise data, and the open band B f ,q

is thin enough to contain at most k − 1 imprecise data (where k , k depend
on n, ε, p, β).

The function fLRM ∈ F minimizing sup Cf is the (Γ-)minimax decision, and has
a simple geometrical interpretation: B fLRM ,qLRM is the thinnest band of the form
B f ,q containing at least k imprecise data.

Each function f ∈ F such that Cf intersects CfLRM is undominated with respect
to interval dominance: geometrically, f is undominated when B f ,qLRM intersects
at least k + 1 imprecise data.

example with social survey data:

We use data from the “ALLBUS — German General Social Survey” of 2008 to
investigate the relationship between two variables (with n = 3247): age Xi ∈
X : = [18, 100) and personal income (on average per month) Yi ∈ [0, +∞).

We consider the set F = {fa,b1,b2 : a, b1, b2 ∈ R} of all quadratic functions
fa,b1,b2(x) = a+b1 x+b2 x

2, and choose ε = 0, p = 0.5, and β = 0.15 (implying
k = 1568 and k = 1679).

In 4 different data situations, we compare fLRM (violet solid line, with B fLRM ,qLRM

represented by the violet dashed lines) and the undominated functions (gray
dotted curves) with the results of the ordinary least squares regression applied
after reducing the imprecise data to their centers and choosing 15 000 (blue
curve) or 10 000 (green curve) as the upper income limit.



original data:

age data:
3236 “precise” (in years: 83 classes), 11 missing

income data:
2266 precise, 361 categorized (22 classes), 620 missing

The set of undominated parameter values. Two-dimensional histogram of the data set and regression results.

categorized income data:

age data:
3236 “precise” (in years: 83 classes), 11 missing

income data:
2627 categorized (22 classes), 620 missing

The set of undominated parameter values. Two-dimensional histogram of the data set and regression results.



categorized age data:

age data:
3236 categorized (6 classes), 11 missing

income data:
2266 precise, 361 categorized (22 classes), 620 missing

The set of undominated parameter values. Two-dimensional histogram of the data set and regression results.

categorized age and income data:

age data:
3236 categorized (6 classes), 11 missing

income data:
2627 categorized (22 classes), 620 missing

The set of undominated parameter values. Two-dimensional histogram of the data set and regression results.
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