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Classification Class variable C with generic value c ∈ C

Features F := (F1, . . . ,Fm), values fi ∈Fi, i = 1, . . . ,m
Given data, which class label for the instance F = f̃ ?

Bayesian Classifiers Learn joint distribution P(C,F)
Assign to f the most probable class label argmaxc′∈C P(c′, f̃)
This defines a classifier, i.e., a map: (F1× . . .×Fm)→ C

Credal Classifiers Learn joint credal set P(C,F)
Set of optimal classes (e.g., according to maximality )

{c′ ∈ C |@c′′ ∈ C ,∀P ∈ P : P(c′′|f̃) > P(c′|f̃)}
This defines a credal classifier, i.e.,

(F1× . . .×Fm)→ 2C

May return more than a single class label!

Credal Classifiers (CCs)
Accuracy is not a sufficient descriptor for CCs performances!

• determinacy : % of instances classified with a single class

• single/set accuracy : accuracy over instances classified
with single class/multiple classes

• indeterminate output size: average # of classes when
classification indeterminate

CCs Performance Evaluation

Bayesian learning extended to imprecision

Set of Dirichlet modelling prior near-ignorance

Bounds of the posterior is

P(c) ∈
[

n(c)
N + s

,
n(c)+ s

N + s

]

n(·) counting function

Real parameter s as equivalent sample size

Typical choices s ∈ [1,2]

If s→+∞, vacuous intervals

If s→ 0, ML estimator

Learning Credal Sets (IDM)
Learning credal sets from N data D about
Boolean C, with n(c) = N/2, by likelihood-
based (α = .85) and IDM (s = 2) approaches
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IDM vs. Likelihood
Frequentist (ML) learning extended to imprecision

With complete (multinomial) data, likelihood is unimodal

Replace the single ML estimator, with the set of models
whose likelihood is behind a threshold (α times the ML)

Pα(C) = {P(C) ∈ P(C) : P(D) ≥ αPML(D)}

The starting credal set P(C) can be vacuous
(or any other more informative set)

For each α ∈ [0,1], Pα(C) ⊆ P(C). In particular:

Pα=0(C) = P(C) (no threshold, no learning)

Pα=1(C) = {PML(C)} (highest threshold, ML “precise” learn-
ing)

Learning Credal Sets (Likelihood)

given class C, features (F1, . . . ,Fm) are
conditionally independent

C

Fm. . .F2F1

Often unrealistic, but good for classification!

E.g., NBC (naive Bayes classifier [3])

Can be extended to the imprecise case with both
concepts of strong independence and epistemic
irrelevance. Same inferences are obtained!

Naive Classifiers
IDM to learn joint credal set P(C,F) under naive assumption

Efficient algorithm for maximality-based classification!

Optimization problem[
n(c′)+ st(c′)
n(c′′)+ st(c′′)

]1−m m

∏
j=1

n(c′, f̃ j)

n(c′′, f̃ j)+ st(c′′, f̃ j)
,

with the IDM constraints on the Dirichlet priors

T :=

t

∣∣∣∣∣∣∣
∑c∈C t(c) = 1
∑ f j∈Fi t(c, f j) = t(c),∀ j
t(c, f j) > 0,∀(c, f j) ∈ C ×F j,∀ j

 .

Reject c′′ if the optimum is bigger than one

Coping with zero-counts If n(c′, f̃ j) = 0, class c′ cannot
dominate any other class (feature problem). IDM con-
straints T can be rewritten by an ε-contamination in the form
ε |C |−1 ≤ t(c) ≤ (1− ε)+ ε |C |−1, and similarly for t(c, f j) [2].

This is called NCCε (standard NCC for ε = 0, NBC for ε = 1).

Naive Credal Classifier (with IDM, [4])
Start with the “vacuous” credal set P(C,F) including all the
possible NBC specifications

Refine this set with likelihood-based learning + maximality:

inf
P∈P:P(D)≥αPML(D)

P(c′, f̃)
P(c′′, f̃)

> 1

This condition for c′ dominating c′′ can be checked with no
need of stochastic approaches: an analytical formula for
the upper envelope of the likelihood is derived (see paper)
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Coping with zero-counts
Just add to the likelihood
record (C = ∗,F = f) with C
missing-at-random!

This is called LNCCα.

Likelihood-based NCC [1]

•Discounted accuracy : rewards a set-valued classification with 1/k or 0, depending on whether the set contains or not
the correct class; Single Accuracy is the accuracy of the classifier when it return a single class.

• The performance of the two classifiers is very close, when the determinacy is comparable!
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Discounted-accuracy D NCC Det Sgl-acc D-acc NBC-I
1 IDM ε = 0.05 96.1 75.6 74.6 58.6
1 LIK α = 0.95 95.7 75.7 74.6 57.5
2 IDM ε = 0.05 95.1 73.3 72.1 45.6
2 LIK α = 0.95 93.9 73.8 71.9 50.2
3 IDM ε = 0.05 95.3 85.7 60.3 84.0
3 LIK α = 0.75 95.4 85.5 61.1 83.9

The scatter plots compare NCCε (x-axis) and LNCCα (y-axis).
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