LIKELIHOOD-BASED STATISTICAL DECISIONS Marco Cattaneo Seminar for Statistics ETH Zürich, Switzerland July 23, 2005 #### Let \mathcal{P} be a **set of statistical models**: - \mathcal{P} is a set of probability measures on a measurable space (Ω, \mathcal{A}) ; - absolutely no structure is imposed on \mathcal{P} (for instance, \mathcal{P} could be a nonparametric family of models). The **likelihood function** $lik_A : \mathcal{P} \to [0,1]$ based on the observation $A \in \mathcal{A}$: - is defined by $lik_A(P) = P(A)$; - measures the relative plausibility of the models $P \in \mathcal{P}$, on the basis of the observation A alone; - is not calibrated: only ratios $lik_A(P)/lik_A(P')$ are well determined in a statistical sense. ### **Relative Plausibility** The **relative plausibility** rp on \mathcal{P} generated by lik_A : - is the class of nonnegative functions on $2^{\mathcal{P}}$ defined by $rp(\mathcal{H}) \propto \sup_{P \in \mathcal{H}} lik_A(P)$; - ullet is a non-calibrated possibility measure on ${\mathcal P}$. # The description of the uncertain knowledge about the models by means of relative plausibility: - ullet can be easily updated (since $lik_{A\cap B}=lik_A\,lik_{B|A}$); - allows a natural incorporation of prior information: independent pieces of information can be combined, and complete (or partial) ignorance can be described; - is parametrization invariant; - satisfies the strong likelihood principle; but can also use pseudo likelihood functions; - can be used for inference (maximum likelihood estimator, tests and confidence regions based on the likelihood ratio statistic, . . .) and decision making (MPL criterion); - leads to conclusions which are in general weaker than those based on a probabilistic description of the uncertain knowledge about the models; but is based on weaker assumptions, is simpler and more intuitive. ### **MPL** Criterion A statistical decision problem is described by a loss function $L: \mathcal{P} \times \mathcal{D} \to [0, \infty)$: - ullet $\mathcal D$ is the set of possible decisions, and $\mathcal P$ is the set of considered statistical models; - L(P,d) is the loss we would incur, according to the model P, by making the decision d. If the uncertain knowledge about the models is described by the relative plausibility rp on \mathcal{P} , the **MPL criterion** for choosing a decision $d \in \mathcal{D}$ consists in minimizing $\sup_{P \in \mathcal{P}} rp\{P\} L(P,d)$: - the minimized quantity is the Shilkret integral of $L(\cdot, d)$ with respect to rp: this is intuitive and simple (allowing decisions even in difficult problems); - if invariance with respect to translations of the loss function is needed, the integral of Choquet should be used instead of the one of Shilkret; - the obtained decision functions are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied); - the consideration of many examples suggests that the MPL criterion leads in general to reasonable decisions. ### **Example** Estimation of the variance components in the 3×3 random effect one-way layout, under normality assumptions and weighted squared error loss. $$X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \forall i, j \in \{1, 2, 3\}$$ Normality assumptions: $$lpha_i \sim \mathcal{N}(0, v_a)$$, $\varepsilon_{ij} \sim \mathcal{N}(0, v_e)$, all independent $\Rightarrow X_{ij} \sim \mathcal{N}(\mu, v_a + v_e)$ dependent, $\mu \in \mathbb{R}$, $v_a, v_e \in \mathbb{R}^+$ The estimates $\widehat{v_e}$ and $\widehat{v_a}$ of the variance components v_e and v_a are functions of $$SS_e = \sum_{i=1}^3 \sum_{j=1}^3 (x_{ij} - \bar{x}_{i\cdot})^2 \quad \text{and} \quad SS_a = 3 \sum_{i=1}^3 (\bar{x}_{i\cdot} - \bar{x}_{\cdot\cdot})^2 \; ,$$ where $$\bar{x}_{i\cdot} = \frac{1}{3} \sum_{j=1}^3 x_{ij} \; , \quad \bar{x}_{\cdot\cdot} = \frac{1}{9} \sum_{i=1}^3 \sum_{j=1}^3 x_{ij} \; ,$$ $$\frac{SS_e}{v_e} \sim \chi_6^2 \quad \text{and} \quad \frac{\frac{1}{3}SS_a}{v_a + \frac{1}{3}v_e} \sim \chi_2^2 \; .$$ The considered loss functions are $$3 rac{(\widehat{v_e}-v_e)^2}{{v_e}^2}$$ and $rac{(\widehat{v_a}-v_a)^2}{(v_a+ rac{1}{3}v_e)^2}$. ## **E**xample