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Summary

In most surveys, one is confronted with missing or, more generally, coarse data.

Traditional methods dealing with these data require strong, untestable and often

doubtful assumptions, e.g. coarsening at random. But due to the resulting, po-

tentially severe bias, there is a growing interest in approaches that only include

tenable knowledge about the coarsening process, leading to imprecise, but reli-

able results. In this spirit, we study regression analysis with a coarse categorical

dependent variable and precisely observed categorical covariates. Our (profile)

likelihood-based approach can incorporate weak knowledge about the coarsening

process, and thus offers a synthesis of traditional methods and cautious strategies

refraining from any coarsening assumptions. This also allows a discussion of the

uncertainty about the coarsening process, besides sampling uncertainty and model

uncertainty. Our procedure is illustrated with data of the panel study “Labour

market and social security” conducted by the Institute for Employment Research,

whose questionnaire design produces coarse data.

Key words: coarse data, (cumulative) logit model, missing data, partial identification, PASS

data, (profile) likelihood
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1 Introduction

In almost all surveys the problem of item-nonresponse occurs (e.g. Jackson et al., 2010; Sikov,

2018). In the case of missing data, the extent of the bias and the opportunities to correct for

it strongly depend on the underlying missingness mechanism (as introduced by Rubin, 1976).

Therefore, one of the fundamental challenges in the statistical analysis of missing data is the

restricted possibility to test the commonly assumed missingness mechanisms without adding

strong assumptions: While a test for missing completely at random can already be found in

Little (1988), it is fundamentally impossible to distinguish between missing at random and

missing not at random (e.g. Jaeger, 2006). Despite the awareness of this problem, untestable

assumptions on the missingness process are still frequently included in situations where their

validity might actually be doubtful. Examples beyond the missing at random assumption are

approaches relying on a specific pattern-mixture or selection model (e.g. developed by Heck-

man, 1976). In this way, point-identifiability, i.e. uniqueness of parameters of the probability

law underlying the observable data, is spuriously forced, because it is an important prerequisite

for the applicability of traditional statistical methods for handling missing data, as for instance

the EM algorithm or imputation techniques (e.g. Chen and Haziza, 2018; Little and Rubin,

2014; Zhang, 2003).

Especially due to the potentially substantial bias induced by wrongly imposing such point-

identifying assumptions and the lack of indicators fully expressing the impact of nonresponse

in survey estimates (e.g. Nishimura et al., 2016), a proper reflection of the available informa-

tion about the underlying missingness assumption is indispensable (e.g. Manski, 2003). To

this end, one departs from insisting on point-identifying assumptions by turning to strategies

that only include the achievable knowledge, typically resulting in set-valued estimators. In

this way, approaches based on the methodology of partial identification start with no missing-

ness assumptions at all, but then add successively assumptions compatible with the obtainable

knowledge (e.g. Manski, 2003). Similarly, sensitivity analyses for selection models (e.g. Ken-

ward et al., 2001; Verbeke and Molenberghs, 2009) take several different models of missing data

processes into account. Further approaches avoiding strong assumptions about the missing-

ness mechanism are proposed in Cattaneo and Wiencierz (2012), Denœux (2014) and Zhang

(2010). Recently, Manski (2015) gave a new impetus to this topic by stressing the advantage
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of interval-valued point estimates for official statistics with survey nonresponse.

Against this background, we refer to the approach by Zhang (2010) (cf. also Cattaneo and

Wiencierz (2012)), who uses the profile likelihood to describe statistical evidence with miss-

ing data without imposing any assumptions on the missingness process. We generalize this

approach in three ways:

1. We study coarse data as a generalization of missing data.

2. We offer a way to incorporate auxiliary knowledge about the coarsening process as a

generalization of the cautious case refraining from any coarsening assumptions.

3. We consider categorical regression analysis as a generalization of the categorical i.i.d. case.

In this way, we do not restrict ourselves to the issue of nonresponse, but also look at the

problem of partially observed values where subsets of the full state space are observed, also

referred to as the coarse data problem (e.g. Heitjan and Rubin, 1991). An advantage of our

approach is the capability to make use of potentially available partial knowledge about the

coarsening process, which now no longer has to be left out of consideration (as in approaches

that are based on strict assumptions as well as in cautious approaches that rely on no coars-

ening assumptions at all). In particular, we have the opportunity to consider “near coarsening

at random” instead of the strong “(exact) coarsening at random” models, and thus to improve

the credibility of traditional approaches.

The need of such an approach quantifying the underlying uncertainty due to data incomplete-

ness is also apparent from the following recent practical example, intensively discussed in the

German media: Results of a survey on the job-seeking refugees in Germany were published by

the Federal Employment Agency and provoked a heated debate, mainly due to different ways

of dealing with item-nonresponse concerning the possession of a school-leaving qualification.

While ignoring the 24.7% nonrespondents leads to the result that 34.3% job-seeking refugees

are without school-leaving qualification and assumes the refusals to answer to be made ran-

domly, the newspaper “Bild” disseminated an extreme interpretation of the Federal Institute

for Vocational Education and Training’s conjecture that job-seeking refugees without school-

leaving qualification rather tend to refuse to answer and simply counted all nonrespondents

to this group, hence speaking of 59% in this context (cf. e.g. Hoeren, 2017; Brack, 2017). A
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clear communication of the underlying uncertainty would have avoided some discussions and

should generally be part of every trustworthy data analysis. As a reaction to the incident

several statistical agencies pointed to the importance of reflecting on the reasons why the re-

spondents refused their answers (cf. e.g. Brücker and Schupp, 2017). The approach presented

in this paper is able to express the underlying uncertainty attributed to nonresponse and could

utilize weak, but tenable knowledge about the coarsening obtained from the main reasons for

nonresponse.

The main goal of this paper is the estimation of the coefficients of categorical regression models

with coarse data, without including strong, untenable assumptions about the coarsening. Mo-

tivated by two examples regarding the income questions from the panel study “Labour market

and social security” (PASS, Trappmann et al., 2010) conducted by the Institute for Employ-

ment Research (i.e. the Research Institute of the (German) Federal Employment Agency), the

focus is set on the logit model for binary response data and the cumulative logit model for

ordinal response data. Throughout the paper, we restrict ourselves to cases of coarse categori-

cal (including nominal and ordinal scale) response variables and precisely observed categorical

covariates.

Besides the uncertainty about the coarsening process, we discuss some aspects of sampling

uncertainty and model uncertainty in the context of coarse data. The impact of model as-

sumptions in the context of incomplete data is an important aspect of study in literature

(cf. e.g. Hüllermeier, 2014; Sánchez and Couso, 2018; Schollmeyer and Augustin, 2015). We

study in particular the effect of the regression model assumptions on the estimated coarsening

parameters.

Our paper is structured as follows: In Section 2 we motivate the collection of coarse data and

introduce the running example based on the PASS data. Afterwards, in Section 3 we explain

the way we look at the problem and elaborate the profile likelihood approach that is used

here in order to determine regression coefficients that are basically reliant upon no coarsening

assumptions at all. This approach is refined in Section 4 in order to be able to utilize also weak

knowledge about the coarsening process. After having addressed the uncertainty due to coarse

data, in Section 5 we also consider sampling uncertainty and discuss the uncertainty inherent

in the parametric assumptions of the regression model in this coarse data context. Section 6
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concludes by giving a summary and some remarks on further research.

2 Coarse categorical data: The running example

In most surveys, respondents can choose their answers between several predetermined options.

Nevertheless, providing answers associated to a specific level of accuracy may be considered

problematic for different reasons: First, respondents might be able to give a more precise

answer, but there is no possibility to express it. Second, the other way round, respondents

potentially may at most be able to decide for a set of categories, but not for the one category

they actually belong to, since they are not acquainted enough with the topic of the question.

Third, respondents may deliberately refuse their precise answer for reasons of data privacy.

While the consequence in the first situation is (only) loss of information, in the second and

third situation non-ignorable nonresponse or measurement errors occur in a classical question-

naire design.

All these problems could be attenuated by asking in different ways allowing the respondent to

answer with the desired level of accuracy. For example, an explicit collection of coarse cate-

gories is used in the panel study “Labour market and social security” (PASS study, Trappmann

et al., 2010) conducted by the Institute for Employment Research. Here the question about in-

come, which is known to be highly sensitive (e.g. Tourangeau and Yan, 2007), is asked by means

of the following questioning technique illustrated in Figure 1: Respondents refusing to disclose

their precise income (in the following called nonrespondents) are asked to answer additional

questions starting from providing rather wide income classes (e.g. < 1000 e or not) that are

successively narrowed (e.g. < 500 e, between 500 e and 750 e, or between 750 e and 1000 e).

In this way, answers with different levels of coarseness are received by simultaneously ensuring

the individual degree of data privacy demanded by the respondents. This strategic question-

ing technique to increase response rates is sometimes referred to as non-response follow-up

(e.g. Olson, 2013, where this is distinguished from “follow-up attempts”, i.e. repeated efforts

to contact respondents). Depending on the research question, various ways to integrate the

answers from the respondents reporting their precise, non-categorical income are conceivable.

We first point to some general options before we mention how we proceed here: To include

all answers in the most precise level inferable from the data, a mixture model (e.g. McLachlan
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< 1000 ≥ 1000 na

≥ 1500

< 2000

< 1500

< 500 < 750 ≥ 750 na ≥ 2000 na

na ≥ 3000< 3000 na

({a}) ({b}) ({c})

({d}) ({e}) ({f}) ({g})

({a,b,c})

({d,e}) ({f,g})

({d,e,f,g})

({a,b,c,d,e,f,g})

Figure 1: In the PASS study, for nonrespondents the income questions are individually ad-
justed, providing for instance categories abbreviated by “< 500 e”, “< 750 e” (actually
meaning < 750 e and ≥ 500 e) and “≥ 750 e” (≥ 750 e and < 1000 e) to original nonre-
spondents who already reported to be in class < 1000 e in an earlier question. The notation in
brackets refers to Example 2, introduced later on, where the cardinality of the sets gives some
indication about the level of accuracy. For ease of presentation, we restrict to the granularity
of categories depicted here. In fact, the PASS data partly provide even finer categories.

and Peel, 2004) may be used differentiating between nonrespondents and respondents. In some

situations, e.g. in the context of poverty measurement, an answer on a certain ordinal level

might be sufficient, hence the precise answers could be classified to the most precise income

categories reported by the nonrespondents, allowing a joint analysis. An alternative might be

a joint likelihood approach accounting for respondents, nonrespondents and different groups of

partial respondents by distinct likelihood contributions (cf. Drechsler et al., 2015, who use an

imputation-based technique and illustrate their results by the PASS data as well). Here, we

restrict ourselves to the answers of the nonrespondents and treat income as ordinal, by con-

sidering as the true categories the ones that would result in case of a response to all follow-up

questions. In a second step a mixture model or a comparative analysis of respondents and

nonrespondents could follow.

Our question in focus will be the investigation of some covariates’ impact on a true categorical

response variable partly observed in a coarse way. In the example, the true categorical income

is used as a response variable distinguishing the following two settings, referred to as “Exam-

ple 1” and “Example 2” later on:

Example 1: Binary response variable

Here we restrict the available income data to the answers obtained from the first question.
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Thus, the categories “< 1000 e”, “≥ 1000 e” and “no answer” (i.e. the coarse answer “either

< 1000 e or ≥ 1000 e”) are observed, reducing the coarsening problem to the missing data

problem. When we consider Example 1, the categories are abbreviated by “<”, “≥” and “na”

in the following.

Example 2: Ordinal response variable

Here we account for the whole ordinal structure inherent in the data, and the observed income

variable includes different levels of coarseness. In the context of Example 2, the abbreviations

given in brackets in Figure 1, i.e. categories “{a}” to “{a,b,c,d,e,f,g}” (abbreviated by {a−g}),

are utilized, where the latter one is interpreted as “either a or b or . . . or g”.

In this way, we constructed one data situation with a binary and one with an ordinal true

response variable (with values “< 1000 e” and “≥ 1000 e” (Example 1) and values “{a}” to

“{g}” (Example 2), respectively). In both examples we use the highest school leaving certifi-

cate (first covariate) and age (second covariate) as covariates. Both variables are dichotomized,

thus showing values “Abitur no” (0) or “Abitur yes” (1) (the “Abitur” is the general qualifi-

cation for university entrance in Germany) and “< 40” (0) or “≥ 40” (1), respectively. The

contingency tables in Table 1 and Table 2 summarize the considered unweighted data. To

avoid very small sample sizes in some subgroup-specific coarse categories, we rely on the data

from wave 1 to 4, including information on 877 individuals. Since the PASS study is a panel

study, we had to make sure that no individual is included repeatedly, hence excluding dupli-

cates. Questionnaire techniques directly offering different levels of coarse categories (instead of

starting solely with a “Don’t know” and precise categories like in the PASS study) are expected

to reduce the problem of small sample sizes in coarse categories.

Explanation regarding the anonymization of the data: To comply with our data ac-

cess contract and the non-disclosure regulations of the Federal Employment Agency (cf. Beyer

et al., 2014), we have not only to delete in Table 2 all frequencies that are ≤ 3, here mark-

ing them by “*”, but also to guarantee that any back-calculation of values is impossible. In

each line of Table 2 the sums of the frequencies referring to the categories {a}, {b}, {c}, and

{a, b, c} (group 1) as well as to {d}, {e}, {d, e}, {f}, {g}, {d− g}, and {f, g} (group 2) can
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Table 1: Contingency table for the data of Example 1 (Binary response variable).

Observed income class
Abitur age < ≥ na

no (0) < 40 (0) 97 63 102
≥ 40 (1) 69 115 131

yes (1) < 40 (0) 33 50 41
≥ 40 (1) 38 79 59

Table 2: Contingency table for the data of Example 2 (Ordinal response variable).

Observed income class
Abitur age {a} {b} {c} {a,b,c} {d} {e} {d,e} {f} {g} {d–g} {f,g} {a–g}
no (0) < 40 (0) 50 17 18 12 22 11 * 9 * 9 * 102

≥ 40 (1) 24 18 21 6 23 18 6 16 9 33 10 131
yes (1) < 40 (0) 21 * * * 10 7 5 7 8 9 4 41

≥ 40 (1) 20 9 * * * 9 * 14 20 17 10 59

be inferred from Table 1. For this reason, we apply an additional (more heuristic) data-based

rule and hide also the next smallest entry in each group containing deleted entries, and then

the next smallest entry as well whenever the sum of the frequencies in the deleted entries is

smaller than seven. In this way, a considerable variety of possible scenarios remains, making

back-calculations uninformative enough.

3 A profile likelihood approach with coarse categorical

data

Our main goal is the estimation of the regression coefficients with coarse categorical data

when refraining from strong, frequently untenable assumptions about the coarsening. For

this purpose, we extend the profile likelihood approach for the latent variable distribution

developed by Zhang (2010). But – unlike Zhang – we explicitly consider the dependence of the

likelihood on the coarsening process, which offers the opportunity to include different kinds

of auxiliary information about the coarsening process in a next step (cf. Section 4) and hence

one will no longer be restricted to the case of total ignorance or total knowledge. This section

is structured as follows: First, we will present our view of the coarse data problem, including

the explicit parametrization forming the basic difference to the approach by Zhang (2010)

(cf. Section 3.1). Second, we will elaborate a profile likelihood approach for the latent variable
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distribution based on this view (cf. Section 3.2), which will then be refined for the regression

context (cf. Section 3.3).

3.1 The general view of the problem

To frame the problem of coarse data technically, we distinguish between an observed and a

latent world.

Let (x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn) be a sample of n independent realizations of the

categorical random variables (X1, . . . , Xp, Y ). Unfortunately, some values yi are not known

precisely, hence the random variable Y refers to the latent world. Instead, we only observe a

sample (x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn) of n independent realizations of (X1, . . . , Xp,Y),

where the random set Y (e.g. Nguyen, 2006) belongs to the observed world and describes the

coarsened observation of Y . While the state space of the variable Y is denoted by SY , the

values of the random set Y are contained within the state space SY ⊂ P(SY ), where we assume

the empty set to be generally excluded, but all precise categories {y} to be included. Since we

aim at a regression analysis here, we are interested in the estimation of the probabilities

πxy = P (Y = y|X = x), y ∈ SY , x ∈ SX , (1)

given the – assumed to be – precise values x = (x1, . . . , xp)
T ∈ SX of the categorical covariates

X1, . . . , Xp. Throughout the next sections, we speak of the latent variable distribution when

we refer to the parameters in (1). The associated dependence on the covariates is described

by a response function h (here we write h̃ to stress that it is adapted to account also for the

reference category)

πxy = h̃(ηxy) , (2)

with linear predictor ηxy = β0y + d(x)Tβy, where d fills the role of transferring the covariates

into appropriate dummy-coded ones (cf. e.g. Fahrmeir et al., 2013, p. 31). In this paper, an

estimation of the regression coefficients β0y and βy that only includes the available information

about the coarsening process will be of special interest.
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By applying the theorem of total probability, we can include the coarsening parameters

qy|xy = P (Y = y|X = x, Y = y), y ∈ SY , x ∈ SX , y ∈ SY , (3)

(cf. Section 3.2, in particular in (9)), and hence establish a formal connection between both

worlds, i.e. the parameters of the latent variable distribution in (1) and the parameters of the

observed variable distribution

pxy = P (Y = y|X = x), y ∈ SY , x ∈ SX . (4)

Apart from requiring error-freeness in the sense that the true value is contained in the coarse

value, Y ∈ Y , and distinct parameters in the missing data model and the substantive model

(cf. Rubin, 1976), we refrain from making assumptions about the coarsening in Section 3.2

and 3.3, but then discuss in Section 4 how frequently available weak knowledge about the

coarsening can be included in a powerful way.

3.2 The profile (log-)likelihood for the latent variable distribution

Compared to the global log-likelihood l, which depends on all parameters, the profile log-

likelihood is a function of the parameter of interest only and arises from the global log-likelihood

by considering all other parameters as nuisance parameters (cf. e.g. Pawitan, 2001, p. 80),

taking the values producing the maximum. In our case, a specific parameter πxy, x ∈ SX , y ∈

SY (cf. (1)) might be of interest. The profile log-likelihood follows as

l(πxy) = max
ξ
l(πxy, ξ) (5)

with nuisance parameters ξ including all coarsening parameters (cf. (3)) and all parameters

defining the latent variable distribution (cf. (1)) apart from the one that that is of interest. In

our categorical setting, the number of nuisance parameters is finite and does not increase with

the number of observations. We typically rely on the relative profile (log-)likelihood, which

simply arises from a kind of normalization: The relative profile log-likelihood is obtained by

subtracting the maximum value of the log-likelihood function from the profile log-likelihood,
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so that the maximum value of the profile log-likelihood function is always 0. To write down the

(relative) profile (log-)likelihood for a parameter of the latent variable distribution, we start

with the global (log-)likelihood in terms of all parameters of the latent world (cf. (2) and (3))

γ = (πxy, qy|xy)x∈SX ,y∈SY ,y∈SY
. (6)

For this purpose, we can rely on the parametrization of a selection model (cf. e.g. Heckman,

1976; Diggle and Kenward, 1994; Sikov, 2018) and the basic argumentation developed in Plass

et al. (2015). We start in the observed world with the random set Y and interpret all elements

of SY as categories of their own (e.g. category {a, b} is regarded as its own precise category).

For fixed covariate values x ∈ SX , the cell counts (nxy)y∈SY are multinomially distributed, and

thus the log-likelihood in terms of all parameters of the observed world (cf. (4))

ϑ = (pxy)x∈SX ,y∈SY (7)

can be written as

l(ϑ) =
∑

x∈SX ,y∈SY

nxy · ln
(
pxy
)
. (8)

Next, the information from the observation model relating the latent to the observed world

is included via a mapping Φ : γ 7→ ϑ. This mapping describes the transfer – based on the

theorem of total probability – between the parametrization in terms of the components of γ in

(6), i.e. the parameters of the latent variable distribution and the coarsening parameters, and

the ones of ϑ in (7), i.e. the parameters of the observed variable distribution. Consequently,

the prescription of the reparametrization Φ is given by

pxy =
∑
y∈y

πxy · qy|xy , (9)
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Figure 2: The (relative) profile log-likelihood functions for the parameters in γ, here restricting
to subgroups “00” and “11”.

for all x ∈ SX , y ∈ SY . Finally, we can plug (9) into (8), which gives us the log-likelihood in

terms of the parameters of the latent world, i.e.

l(γ) =
∑

x∈SX ,y∈SY

nxy · ln
(∑
y∈y

πxy · qy|xy
)
. (10)

Having determined the global (log-)likelihood by (10), maximum likelihood estimates can be

obtained and profile (log-)likelihoods can be calculated according to (5). Each profile log-

likelihood function can be graphically represented by varying the value of the parameter of

interest on a grid and each time calculating the log-likelihood at the values of the nuisance

parameters that jointly maximize the log-likelihood for this specific value of the parameter of

interest. While for the observed world l(ϑ) can usually be uniquely maximized yielding ϑ̂, due

to the non-injectivity of the mapping Φ, this is generally impossible for l(γ) – except when

very strict assumptions about the coarsening, such as coarsening at random (cf. Section 4), are

imposed. The range of the plateau of the profile (log-)likelihood characterizes the maximum

likelihood estimator of the parameter of interest. In fact, due to the invariance of the likelihood

under parameter transformations, the set-valued maximum likelihood estimator

Γ̂ = {γ | Φ(γ) = ϑ̂} (11)
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Table 3: Estimation of the parameters of the latent world (Example 1; the counts can be
inferred from Table 2).

π̂x< q̂na|x< q̂na|x≥

π̂00< ∈ [0.37, 0.76] q̂na|00< ∈ [0, 0.51] q̂na|00≥ ∈ [0, 0.62]
π̂01< ∈ [0.22, 0.63] q̂na|01< ∈ [0, 0.66] q̂na|01≥ ∈ [0, 0.53]
π̂10< ∈ [0.27, 0.60] q̂na|10< ∈ [0, 0.55] q̂na|10≥ ∈ [0, 0.49]
π̂11< ∈ [0.22, 0.55] q̂na|11< ∈ [0, 0.61] q̂na|11≥ ∈ [0, 0.43]

results. We can represent it for the single components of γ by its one-dimensional projections,

obtaining

π̂xy∈
[
nx{y}

nx

,

∑
y3y nxy

nx

]
, q̂y|xy∈

[
0,

nxy

nx{y} + nxy

]
, (12)

for all x ∈ SX , y ∈ SY and all y ∈ SY such that {y} ( y with nx > 0. It is important to keep

in mind that points in these intervals are constrained by the restrictions in (9). The result in

(12) can be shown to correspond to the one obtained from so-called cautious data completion,

virtually plugging in all potential precise sample outcomes compatible with the observations

(cf. Augustin et al., 2014, §7.8).

Furthermore, we can calculate the (relative) profile log-likelihood for all parameters of the

latent world in Example 1, i.e. πx<, qna|x< and qna|x< for all four subgroups x ∈ SX =

{“00”, “01”, “10”, “11”}, which are interpreted as “Abitur=0, age=0”, “Abitur=0, age=1”,

“Abitur=1, age=0” and “Abitur=1, age=1”, respectively. For reasons of presentation, Fig-

ure 2 restricts to the results from subgroup “00” and “11”. The set-valued maximum likelihood

estimate Γ̂ is not a singleton: There are multiple estimated combinations of coarsening param-

eters and latent variable distributions that are compatible with the restriction in (9) and thus

lead to the estimated observed variable distribution. Different scenarios for the estimation of

π00< are conceivable, ranging from attributing all coarse categories “na” to “≥” to including

them all in category “<”, thus obtaining (cf. (12))

π̂00< ∈ [π̂00<, π̂00<] with π̂00< =
97

262
≈ 0.37 and π̂00< =

97 + 102

262
≈ 0.76 .

The resulting estimates (i.e. the one-dimensional projections of Γ̂) for Example 1 are shown

in Table 3.
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3.3 The profile (log-)likelihood for the regression coefficients

Starting from the global (log-)likelihood for the parameters of the latent world described by

(10), we first aim at determining the global (log-)likelihood in terms of the regression coef-

ficients and the coarsening parameters. Proceeding as in (5), we can then derive the profile

(log-)likelihoods for the regression coefficients from this global (log-)likelihood.

In a generalized linear model, the relation between the response variable distribution and

the linear predictor is described by the response function. We can thus obtain the global

log-likelihood in terms of the regression coefficients and the coarsening parameters by sim-

ply replacing all parameters defining the latent variable distribution in (10) by the response

function in (2), obtaining

l(β0y,βy, (qy|xy)x∈SX ,y∈SY ,y∈SY
) =

∑
x∈SX ,y∈SY

nxy · ln
(∑
y∈y

h̃(β0y + d(x)Tβy) · qy|xy
)
. (13)

For instance, the profile log-likelihood for β0y is then calculated as

l(β0y) = max
ξ
l(β0y, ξ) (14)

with nuisance parameters ξ including all coarsening parameters and all regression coefficients

except β0y. In Section 5.2 we will see that, depending on the data situation and the parametric

assumptions of the regression model, the resulting profile (log-)likelihoods for the regression

coefficients can either show again a plateau or have a unique maximum. To already give an

intuition for this point, one can imagine that rather weak parametric assumptions and a large

number of coarse observations still allow for multiple possible underlying precise values, re-

flected by the plateau of the profile (log-)likelihood, while strong parametric assumptions and

a small number of coarse observations tendentially lead to a unique maximum. We now illus-

trate the calculation of profile log-likelihood functions for regression coefficients using the data

situations of Example 1 and Example 2.

Example 1: Due to the binary dependent variable (SY = {<,≥}), we choose a logit model
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Figure 3: With the data of Example 1, the (relative) profile log-likelihood function for each
regression coefficient β0, β1, and β2 shows a plateau.

with the response function

πx< = P (Y = “ < ” |x) =
exp(β0 + d(x)Tβ)

1 + exp(β0 + d(x)Tβ)
(15)

for the category of interest, here “<”, and

πx≥ =
1

1 + exp(β0 + d(x)Tβ)
, (16)

for the reference category, here “≥”. Plugging (15) and (16) in (13) gives the global log-

likelihood in terms of the regression coefficients l(β0, β1, β2, qna|00<, qna|00≥, . . . , qna|11<, qna|11≥),

where β1 and β2 refer to the covariates Abitur and age, respectively. The profile log-likelihood

for each regression coefficient (depicted in Figure 3) can be calculated by evaluating the global

log-likelihood on a grid of values for the regression coefficient of interest and for each value

choosing the nuisance parameters at the corresponding likelihood-maximizing values. By con-

sidering the plateau of the profile log-likelihood for each regression coefficient, we can infer

the cautious maximum likelihood estimates for the regression coefficients, which refer to the

case without assumptions on the coarsening process. The profile (log-)likelihood cannot be

maximized uniquely in this data situation (further details are given in Section 5.2, where this

case is referred to as situation 1).
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Example 2: To account for the ordinal structure of the response variable, we base our analysis

on the cumulative logit model (cf. e.g. Fahrmeir et al., 2013, p. 334–337). This model relies on

the idea that the ordinal response categories are obtained instead of the exact values of a latent

continuous variable Ỹ , thus introducing a second layer of latency in our case. For this variable

a regression model Ỹ = −d(x)Tβ+ ε with ε ∼ F is assumed, where F is the (standard) logistic

distribution function. Assuming intercepts increasing with the order of the respective category:

−∞ = β0y(0) < β0y(1) < · · · < β0y(m) =∞, the connection to our categorical variable of interest

Y is given by Y = y(l) ⇐⇒ β0y(l−1) < Ỹ ≤ β0y(l) , l = 1, . . . ,m, where y(l) is the lth category

within the ordered categories y(1), . . . , y(l), . . . , y(m). While the intercepts are category-specific,

the regression coefficients β are not: this is also referred to as proportional-odds assumption

(cf. e.g. Fahrmeir et al., 2013, p. 336). The ordinal structure is included by basing the analysis

on the cumulative probabilities described by the distribution function F , hence considering the

response function

P (Y ≤ y(l) |x) = F (β0y(l) + d(x)Tβ), with (17)

F (β0y(l) + d(x)Tβ) =
exp(β0y(l) + d(x)Tβ)

1 + exp(β0y(l) + d(x)Tβ)
, and with

πxy(l) = P (Y = y(l) |x) = F (β0y(l) + d(x)Tβ)− F (β0y(l−1) + d(x)Tβ), l = 1, . . . ,m,

(cf. e.g. Fahrmeir et al., 2013, p. 335). Using the relation formalized via the response function

in (17) within the global (log-)likelihood representation in (13) again gives us the starting point

for the derivation of the (relative) profile (log-)likelihood for each regression coefficient, here

for the category-specific intercepts β0a, β0b, β0c, β0d, β0e, β0f and the regression coefficients

β1 and β2 of Example 2. In Figure 4 the (relative) profile log-likelihood functions for all

regression coefficients are depicted (the calculated profile log-likelihood functions have been

smoothed to avoid the irregularities due to numerical optimization). For reasons of data

protection, we refer to one possible, arbitrarily chosen data scenario that is compatible with

the data in Table 2. Anyway, this choice of the data situation has no recognizable impact

on the results. The maximum likelihood estimates for the regression coefficients are again

obtained by considering the maxima/maximum of the respective function. Figure 4 suggests

a unique maximum (pointing to situation 2, as specified in Section 5.2). Due to the numerical
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Figure 4: Relying on the data in Table 2, for all regression coefficients the respective profile-
likelihood is shown.

difficulties of the cumulative model to deal with the increasing order of the category-specific

intercepts, which also appear here (and possibly even become more intense), the result has to

be treated with some caution.

4 Exploiting partial knowledge about the coarsening

In Section 3, we showed a cautious modeling approach, basically refraining from any coarsen-

ing assumptions. Our results already pointed to the problem that the obtained intervals in

the cautious case can be quite wide (cf. e.g. the cautious regression estimators inferable from

Figure 3), and thus might be too conservative in some applications. In practice one frequently

considers the other extreme situation of spurious precision, where strong coarsening assump-

tions, mostly coarsening at random (CAR), are imposed. Heitjan and Rubin (1991) introduced

the concept of CAR, which for each observable value y requires constant coarsening probabili-

ties qy|y regardless of the true underlying value y ∈ y. Adapting CAR to our contingency table

framework, the requirement has to be valid for all subgroups split by the considered covari-

ates: for instance, within each group split by Abitur and age the true income category cannot

have any influence on the coarsening probability. Under CAR, parameters are identified and

the corresponding profile (log-)likelihood functions can be maximized uniquely (cf. e.g. Jaeger,

2006). However, in many cases one is not sure whether strong, point-identifying assumptions
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such as CAR are indeed justified or whether a remarkable bias has to be expected (cf. e.g. Plass

et al. (2015, p. 254), where an illustrative simulation study has been conducted showing the

bias resulting from estimating under CAR when it is actually not valid).

For these reasons, we suggest a synthesis of both extreme situations. The user is thus no longer

trapped between including no knowledge or claiming full knowledge, but is instead able to ex-

ploit just the weak information that is available about the coarsening. For the missing-data

problem, literature reveals some possibilities to incorporate (partial) knowledge (cf. ideas based

on the methodology of partial identification or a systematic sensitivity analysis). Mostly, one

restricts either the incompleteness process or the response propensities (e.g. Kenward et al.,

2001; Manski, 2015): here we concentrate on the first option in the context of coarse data and

formulate constraints on qy|xy, which then results in a generalization of CAR.

To prepare our idea, it can help to look at Nordheim (1984), who suggests a way to generalize

the missing at random assumption (MAR) by including the ratio between missingness param-

eters into the analysis of non-randomly missing and misclassified data. In Plass et al. (2015)

we extend this idea by making assumptions about the coarsening probability ratios

Rx,y,y′,y =
qy|xy
qy|xy′

, y ∈ SY , y, y′ ∈ y, x ∈ SX , (18)

where the special case of CAR is expressed by setting all these ratios equal to 1.

In most practical cases it is unrealistic to claim knowledge about the exact values of the ratios

in (18). Nevertheless, it seems quite realistic that former studies or substance-matter considera-

tions allow rough statements about the magnitude of the ratios in the sense of Rx,y,y′,y ∈ [R, R]

with R,R ≥ 0. To practically incorporate such weak knowledge about the coarsening and hence

to obtain a reliable estimation of the regression coefficients, we can again rely on the profile

(log-)likelihood (cf. Section 3.3), including the corresponding linear constraints

qy|xy ≥ qy|xy′ ·R and qy|xy ≤ qy|xy′ ·R , y ∈ SY , y, y′ ∈ y, x ∈ SX , (19)

into the original optimization problem.

For example, there are several practical situations where CAR is principally conceivable, but

its exact applicability is rather questionable. In such cases, it can be reasonable to replace
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CAR by specific neighborhood assumptions (as e.g. addressed in Manski, 2015, for MAR),

requiring that the coarsening probabilities lie in the neighborhood of the CAR case. We refer

to these assumptions as near CAR and formalize them by choosing Rx,y,y′,y to lie within the

interval [ 1
τ1
, τ2], where τ1, τ2 ≥ 1 specify the neighborhood. Rough values of τ1, τ2 ≥ 1 may

be derived from external information dependent on the specific data application and give the

basis for a systematic sensitivity analysis.

Another, in some sense dual, kind of strict coarsening that can be relaxed in a next step is

given by subgroup independence (SI, cf. Plass et al. (2017) for more details in the i.i.d. case).

SI is characterized by the independence of the coarsening probabilities from the corresponding

covariate values, thus assuming that for each fixed y ∈ SY and y ∈ y the coarsening parameters

qy|xy have the same value for all x ∈ SX . Like in the context of CAR, we can consider

probability ratios

Rx,x′,y,y =
qy|xy
qy|x′y

, y ∈ SY , y ∈ y, x,x′ ∈ SX , (20)

where the special case of SI is expressed by setting all these ratios equal to 1. By including

corresponding constraints, analogous to (19), weak assumptions about the values of the ratios

in (20) can be imposed. In particular, near SI can be constructed in analogy to near CAR.

New developments, such as paradata, might positively affect the popularity of our idea. Para-

data are a by-product of the regular data collection and refer to the data collection process

itself (cf. e.g. Durrant and Kreuter, 2013; Kreuter and Olson, 2013). Examples are interviewer

observations about the housing situation of (unit-)nonrespondents to account for nonresponse

bias, or interviewer assessments of the respondents’ embarrassment with regard to certain ques-

tions or response times (cf. e.g. Couper and Kreuter, 2013). Information of this kind might

enrich knowledge about the coarsening process. In many cases, this knowledge is expected to

be of a rather weak nature, such as “respondents with a long response time rather tend to give

a coarse answer compared to respondents answering quickly”. While traditional approaches

have to leave this information unconsidered, our approach is able to incorporate this weak

knowledge properly.

To illustrate the inclusion of auxiliary information about the coarsening process, we again
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Figure 5: The relative profile log-likelihood function for β1 based on different types of auxiliary
information and the data of Example 1.

Table 4: Regression estimates under different information (Example 1).

no information comparative information near CAR CAR

β̂1 ∈ [−1.84, 0.92] β̂1 ∈ [−0.77, 0.05] β̂1 ∈ [−0.67, − 0.47] β̂1 = −0.51

refer to the setting of the examples. There are frequently situations where assumptions such

as “respondents with a high income rather tend to give no answer compared to the ones with a

low income” might be justified from an application standpoint. This weak knowledge about the

missingness probabilities can be formalized by including constraints such as qna|x< ≤ qna|x≥, or

equivalently Rx,<,≥,na ∈ [0, 1] (Example 1), and q{a,b,c}|xa ≤ q{a,b,c}|xb ≤ q{a,b,c}|xc (Example 2).

With the data of Example 1, the profile log-likelihood functions for β1 (Abitur effect) under

this comparative information and other (partial) assumptions (namely CAR and near CAR

with τ1=1.25, τ2=1.3) are depicted in Figure 5, while the corresponding reliable regression es-

timates are given in Table 4. While the regression estimate is uncommitted about the presence

and direction of an Abitur effect if no knowledge about the coarsening is included, under CAR

a precise value is obtained. The results under partial knowledge show a remarkable refine-

ment of the one obtained with no knowledge, solving the trade-off between information and

credibility in situations where some weak knowledge is available.
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5 Further aspects of the involved uncertainties

In Section 4 we presented a way to make use of frequently available weak knowledge about

the coarsening and hence focused on the uncertainty about the coarsening process. One has

to deal with (at least) two further kinds of uncertainties: First, uncertainty occurs due to

the availability of a finite sample size only. In Section 5.1 we will construct likelihood-based

confidence intervals, which not only capture this sampling uncertainty, but simultaneously still

account for the uncertainty about the coarsening process. Second, considering a regression

problem, model assumptions are made and model uncertainty arises. In Section 5.2 we will

discuss the impact of the parametric assumptions of the regression model in the coarse data

problem.

5.1 Uncertainty due to the finite sample size

There are already several proposals that consider the sampling error induced by the availabil-

ity of a finite sample only, here called sampling uncertainty, and the uncertainty about the

data incompleteness at the same time. In this way, confidence intervals for partially identified

parameters have been constructed (cf. Imbens and Manski, 2004; Horowitz and Manski, 2000;

Stoye, 2009a; Vansteelandt et al., 2006). One of the advantages of the (profile) likelihood ap-

proach is the possibility to infer confidence intervals in a direct way. These likelihood-based

confidence intervals are appealing due to their (compared to Wald intervals) better perfor-

mance in case of a small sample size (cf. e.g. Neale and Miller, 1997).

Usually, likelihood-based confidence intervals are constructed by cutting the relative profile

log-likelihood function at level δ = (−0.5χ2
1,1−α) (cf. e.g. Venzon and Moolgavkar, 1988), where

1− α denotes the (approximate) confidence level. The confidence interval consists then of all

values of the parameter of interest for which the relative profile log-likelihood is larger than

or equal to δ. Likelihood-based confidence intervals in the presence of missing data have al-

ready been studied for the probabilities πxy, x ∈ SX , y ∈ SY , relying on the profile likelihood

presented in Section 3.2 (cf. Cattaneo and Wiencierz, 2012; Zhang, 2010). We can proceed

analogously and obtain asymptotic (1 − α) confidence intervals for the regression coefficients

by cutting the corresponding relative profile log-likelihood at level δ.

In Figure 6, we exemplify the construction of likelihood-based confidence intervals, using the
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Figure 6: The δ-cut is symbolized by the solid line, while the black dashed lines mark the
bounds of the confidence interval, here with confidence level 1 − α = 0.9. The extent of the
sampling uncertainty is visible by comparing these bounds with the bounds of the maximum-
likelihood estimate characterized by the gray lines.

Abitur effect β1 and the data of Example 1. In this illustration, we refrain from any assump-

tion about the coarsening, but confidence intervals could also be constructed based on a profile

(log-)likelihood including some (partial) knowledge about the coarsening process along the

lines of Section 4. By considering for instance the case without information and comparing the

confidence interval for β1 (i.e. [-2.20, 1.29]) with the corresponding point estimation yielding

the interval [-1.84, 0.92] in Table 4, one can infer the magnitude of the sampling uncertainty.

5.2 Model uncertainty

In general, there are different interpretations of model uncertainty. Two main sources of model

uncertainty are related to assumptions about

(i) the model family (e.g. a generalized linear model based on a probit or logit link) and

(ii) the variables and interactions included (cf. variable selection, e.g. Kuo and Mallick

(1998)).

Model assumptions and the inherent model uncertainty in case of partially identified models

have already been studied in literature (cf. e.g. Ponomareva and Tamer, 2011; Schollmeyer and

Augustin, 2015). In particular, in this case – unlike in the identified case – the interpretation

of a linear model (in the sense of Freedman (1987) who distinguishes between a structural or a
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descriptive view) is crucial, and can lead to different results. Referring to categorical regression

analysis, we will characterize different kinds of results that can also fundamentally differ from

the ones obtained in the precise/identified case. However, we assume that the right model

family has been specified and concentrate on (ii). In our categorical setting, the saturated

model corresponds to not making any assumptions and is in this sense fully nonparametric.

For this reason, when we speak about model uncertainty we mean the uncertainty due to the

parametric assumptions of the regression model (i.e. at least one effect or interaction of the

saturated model is set equal to zero).

In this section, we restrict ourselves to the setting of Example 1. Although results are ex-

pected to be transferable to cases with non-binary response variables, further research should

tackle this topic.

As noted above, the saturated model is fully nonparametric. For this reason, and due to the

bijectivity and continuity of the link function g(πxy) (cf. e.g. Fahrmeir et al., 2013, p. 304),

the bounds of the estimated regression coefficients (cf. Section 3.3) can also be calculated as a

direct transformation of the bounds of the estimated parameters of the latent variable distri-

bution (cf. Section 3.2). In Appendix A, this result is illustrated for the setting of Example 1,

where the logit model is appropriate.

Substantially different conclusions can be derived in the presence of parametric assumptions in

the regression model, i.e. if a non-saturated model is specified. Since several effects or inter-

actions are set equal to zero, the number of parameters that have to be estimated is reduced.

As a consequence, in the classical case, the regression coefficients and the nonparametric re-

sponse variable distribution are no longer generally compatible with each other. However, in

the coarse data problem, due to the multiple conceivable scenarios this incompatibility is no

longer generally valid, and we discover systematically differing situations. By relying on (9),

for these situations it is directly inferable whether and how the intervals for the coarsening

estimators are sharpened due to the parametric assumptions of the regression model (cf. also

the three pictures in Figure 8 of Appendix D and the derivation in Appendix E):

1. Compatibility:

(a) The obtained regression estimators produce the estimated bounds of the latent

variable distribution calculated without parametric assumptions (i.e. the bounds in
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Figure 7: Profile log-likelihood functions based on an (arbitrary) data constellation classified
to situation 2.

(12)). ⇒ The parametric assumption has no impact on the estimated coarsening

parameters.

(b) The regression estimators represent tighter bounds than the nonparametric esti-

mate of the latent variable distribution in (12). The intuition behind this results is

given by the restriction on (some) interactions, which are set equal to zero (hence

limiting the possible precise data scenarios). ⇒ The parametric assumption has a

slight impact on the estimated coarsening parameters, sharpening the corresponding

intervals.

2. Incompatibility: The parametric assumptions prevent that the nonparametric estimate of

the latent variable distribution in (12) is reproduced by means of the regression estimators

(this is what usually happens in the classical case without coarse observations). ⇒ The

parametric assumption has a strong impact on the estimated coarsening parameters,

making them precise (cf. the unique maximum of the profile (log-)likelihood in Figure 7,

which refers to an illustrative data constellation classified to this situation).

Technically, we obtained this distinction by writing down a (linear) optimization problem for

the setting of Example 1 (cf. Appendix B). This optimization problem aims at finding the

bounds of the regression coefficients under the condition that the nonparametrically estimated

latent variable distribution can be achieved. Whenever a solution exists, we are in situation 1,

24



where the specific situation 1a is obtained when the inequalities of the optimization problem

can be satisfied with equality.

By rearranging the system of inequalities in the optimization problem, we can derive a condi-

tion to distinguish situation 1 from situation 2 (cf. Appendix C). This condition indicates that

with a growing amount of coarse observations we end up in situation 1, while a small amount

rather implies situation 2 (with the precise data situation as a special case). It turns out that

Example 1 is classified into situation 1, and more specifically 1a.

6 Concluding remarks

In this paper, we developed an approach for regression analysis with coarse categorical re-

sponse variables and precisely observed categorical covariates. Our results are reliable because

we are no longer forced to make a particular, often unjustified coarsening assumption in order

to achieve point-identified parameters. Instead, we could reveal a practical possibility for the

user to include frequently available rough statements from his domain knowledge about the

coarsening (such as “respondents with a low income rather tend more often to give a coarse

answer than respondents with an average income”) to refine the results obtained from an anal-

ysis based on no assumptions about the coarsening at all. To determine regression estimators

that only rely on tenable coarsening assumptions, we have chosen an estimation procedure that

extends the profile likelihood approach for the latent variable distribution by Zhang (2010) in

several ways. In particular, we represent the likelihood in terms of the coarsening parameters

to be able to include (weak) available knowledge about the coarsening process. We then further

reparametrize this likelihood by exploiting the relation between the latent variable distribution

and the regression parameters formalized by the response function of the respective categorical

regression model. Maximizing the corresponding profile likelihood for each regression coeffi-

cient gives us regression estimators that only rely on tenable coarsening assumptions. The

approach developed has been examined for the cumulative logit model and in more detail for

the logit model. While corresponding results for other categorical regression model (e.g. anal-

ogous probit models) should be achieved mutatis mutandis when addressing coarse response
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variables, the inclusion of coarse covariates is expected to be less straightforward, also due to

different conceivable interpretations of conditioning on coarse observations.

We applied all findings to the PASS data. A comparison of the regression estimates based

on weak assumptions with the ones of a traditional method including the coarsening at ran-

dom assumption and a cautious method incorporating no assumptions at all confirms that a

synthesis has been found. Depending on the research question, our results might (still) be

assessed as too little informative. However, a possibly small content of information should not

be regarded as a weakness of an approach based on the methodology of partial identification,

but associated to sparse additional knowledge.

Apart from the uncertainty about the coarsening process, we considered two further kinds of

uncertainty:

I. The sampling uncertainty. We additionally addressed the uncertainty due to the availabil-

ity of a finite sample size only and constructed corresponding likelihood-based confidence

intervals.

II. The model uncertainty. We discovered the interplay between the parametric assumptions

of the regression model and the uncertainty about the coarsening assumption for binary

data modelled by logistic regression and figured out that the impact of the parametric

assumptions of the regression model on the estimated coarsening parameters can go from

no effect, via a slight effect through to a very strong effect. Considering this impact also

for more general categorical regression models beyond the logit model should be part of

further research.

Since the incorporation of the uncertainty about the coarsening process represented the main

focus of this paper, we concentrated on a separate discussion of I and II in the presence of the

uncertainty about the coarsening (cf. Section 5.1 and Section 5.2). Further research should

include a joint study of all three kinds of uncertainty.

The major limitation of our work is given by the restricted setting: Throughout this paper, we

confined ourselves to coarse categorical data from small state spaces consisting of few categories

only. While in categorical cases showing large state spaces one can focus on the most important

coarse categories to avoid the explosion of the number of coarse categories, the problem has to

be approached totally differently for continuous variables (cf. e.g. Schollmeyer and Augustin,
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2015). Since most questionnaires involve questions showing a manageable number of categor-

ical answers (cf. e.g. the German General Social Survey, or the European Social Survey) and

many applications from official statistics only include a small number of covariates, there is a

large variety of situations where our proposals can be powerfully employed.

The likelihood approach for the latent variable distribution (cf. Section 3.2) turns out to be

a fruitful field of study for further research: The connection between the latent and the ob-

served world gives the opportunity to transfer already existing likelihood-based methods for

precise categorical data to the setting of coarse data (e.g. statistical tests, cf. Plass et al.,

2017). Another promising topic is the inclusion of weak auxiliary knowledge (cf. Section 4):

First, the collection of paradata might enrich (weak) knowledge about the coarsening process,

which not only shows the relevance of the presented approach, but also gives rise to practical

examples for further research. Second, our way to include weak knowledge can also be applied

to other problems relying on strong assumptions, such as misclassification, propensity score

matching, and statistical matching, where starting points are already provided in Molinari

(2008), Stoye (2009b) (who studied an approach based on partial identification to estimate

treatment effects without considering propensity scores), and D’Orazio et al. (2006), respec-

tively. In particular, propensity score matching and statistical matching traditionally rely on

strict assumptions, namely the strongly ignorable treatment assignment and the conditional

independence assumption, respectively, where our strategy would allow for a practically highly

relevant relaxation of these prerequisites.
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Brack, G. (2017). Wie viele Flüchtlinge sind ohne Schulabschluss? (How

many refugees are without school leaving certificate? [translated by the au-

thors]). Available online at http://www.br.de/nachrichten/faktencheck/

fluechtlinge-ohne-schulabschluss-faktencheck-faktenfuchs-100.html, Accessed:

2019-01-23.

Brücker, H. and Schupp, J. (2017). Annähernd zwei Drittel der Geflüchteten
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A Regression estimators in a saturated model

In a saturated model the bounds of the estimated regression coefficients can also be calculated

as a direct transformation of the bounds of the estimated parameters of the latent variable

distribution. For sake of illustration, we refer to the setting of Example 1, considering a logit

model with the response function in (15) and (16). Equivalently, the model can be represented

by the link function

g(πx<) = ln
( πx<

1− πx<

)
= β0 + d(x)Tβ . (21)

Considering a saturated model, we specify the linear predictor as β0 + β1 ·Abitur + β2 · age +

β12 · age·Abitur, where age·Abitur denotes the interaction between both covariates. As ar-

gued below, the bounds of the four estimated regression coefficients are then determined by

transforming the bounds of the four estimators π̂00<, π̂01<, π̂10< and π̂11<, hence obtaining

β̂0 ∈
[

ln
(

π̂00<

1−π̂00<

)
, ln

(
π̂00<

1−π̂00<

)]
, β̂1 ∈

[
ln
( π̂10<

1− π̂10<

)
− β̂0, ln

( π̂10<

1− π̂10<

)
− β̂

0

]
β̂2 ∈

[
ln
(

π̂01<

1−π̂01<

)
− β̂0, β̂12 ∈

[
ln
( π̂11<

1− π̂11<

)
− β̂1 − β̂2 − β̂0

,

ln
(

π̂01<

1−π̂01<

)
− β̂

0

]
, ln

( π̂11<

1− π̂11<

)
− β̂

1
− β̂

2
− β̂0

]
, (22)

where β̂
0
, β̂

1
, and β̂

2
(β̂0, β̂1, and β̂2) represent the estimated lower (upper) bounds of the

regression coefficients. Since the saturated model is fully nonparametric, it does not induce

any restrictions on the coarsening parameters.

Derivation of the estimators in (22):

• Define λ0 = ln( π00<
1−π00< ), λ1 = ln( π10<

1−π10< ), λ2 = ln( π01<
1−π01< ), λ3 = ln( π11<

1−π11< )

• λ0, λ1, λ2, λ3 can be arbitrarily chosen in the intervals formed by the corresponding bounds:
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λ0 ≤ λ0 = β0 ≤ λ0 → β
0

= λ0; β0 = λ0

λ1 ≤ λ1 = β0 + β1 ≤ λ1 → β
1

= λ1 − λ0 = λ1 − β0; β1 = λ1 − β0
λ2 ≤ λ2 = β0 + β2 ≤ λ2 → β2 analogously

λ3 ≤ λ3 = β0 + β1 + β2 + β12 ≤ λ3

β12 = λ3 − λ1 − λ2 + λ0

β
12

= λ3 − λ1 − λ2 + λ0

= λ3 − (β1 + β
0
)− (β2 + β

0
) + β

0

= λ3 − β1 − β0 − β2 , analogously for β12 .

B Optimization problem in a non-saturated model

(Example 1)

Here we refer to πx< = h(β0 + β1 ·Abitur + β2 · age) of Example 1 with the response function

in (15) and (16) and present the optimization problem for the effect of Abitur:

β1 → min/max subject to (23)

π̂00< ≤
exp(β0)

1 + exp(β0)
≤ π̂00<, π̂10< ≤

exp(β0 + β1)

1 + exp(β0 + β1)
≤ π̂10<,

π̂01< ≤
exp(β0 + β2)

1 + exp(β0 + β2)
≤ π̂01<, π̂11< ≤

exp(β0 + β1 + β2)

1 + exp(β0 + β1 + β2)
≤ π̂11< .

By using the link function in (21), this optimization problem can be transformed into one with

linear constraints:

β1 → min/max subject to (24)

ln
( π̂00<

1− π̂00<

)
≤ β0 ≤ ln

( π̂00<

1− π̂00<

)
, ln

( π̂10<

1− π̂10<

)
≤ β0 + β1 ≤ ln

( π̂10<

1− π̂10<

)
,

ln
( π̂01<

1− π̂01<

)
≤ β0 + β2 ≤ ln

( π̂01<

1− π̂01<

)
, ln

( π̂11<

1− π̂11<

)
≤ β0 + β1 + β2 ≤ ln

( π̂11<

1− π̂11<

)
.
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C Condition to distinguish situation 1 from situation 2

We take the opitmization problem in Appendix B as a starting point and aim at deriving

a condition that tells us whether the optimization problem is solvable (situation 1) or not

(situation 2).

ln(
π̂11<

1− π̂11<
) ≤ β0 + β1 + β2 → β0 + β1 + β2 ∈ [ln(

π̂11<
1− π̂11<

),∞] =: I1

ln(
π̂11<

1− π̂11<
) ≥ β0 + β1 + β2 → β0 + β1 + β2 ∈ [−∞, ln(

π̂11<

1− π̂11<
)] =: I2

ln(
π̂10<

1− π̂10<
) + ln(

π̂01<
1− π̂01<

)− ln(
π̂00<

1− π̂00<
) ≤ β0 + β1 + β2

ln(
π̂10<

1− π̂10<
) + ln(

π̂01<

1− π̂01<
)− ln(

π̂00<
1− π̂00<

) ≥ β0 + β1 + β2

→ β0 + β1 + β2 ∈[ln(
π̂10<

1− π̂10<
) + ln(

π̂01<
1− π̂01<

)− ln(
π̂00<

1− π̂00<
),

ln(
π̂10<

1− π̂10<
) + ln(

π̂01<

1− π̂01<
)− ln(

π̂00<
1− π̂00<

)] =: I3

To have at least one solution, it has to be valid that I1 ∩ I3 6= ∅ and I2 ∩ I3 6= ∅. Hence we obtain the

following condition:

ln
( π̂11<

1− π̂11<

)
+ ln

( π̂00<
1− π̂00<

)
≤ ln

( π̂10<

1− π̂10<

)
+ ln

( π̂01<

1− π̂01<

)
ln
( π̂10<

1− π̂10<

)
+ ln

( π̂01<
1− π̂01<

)
≤ ln

( π̂11<

1− π̂11<

)
+ ln

( π̂00<

1− π̂00<

)

D Illustration of situations 1a, 1b, and 2

A schematic illustration of the mappings considered in this paper is given in Figure 8, where

the squares symbolize the parameter spaces of the respective parameters: The first mapping

refers to the relation between the regression coefficients and the parameters of the latent world

(formalized via the response function) studied in Section 5.2, the second to the relation between

the parameters of the latent and the observed worlds expressed via Φ (cf. Section 3.2).
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ϑ̂

latent world
(variable Y)

observed world
(variable Y)

γ̂(...)

Φ : Θlat Θobs

b

parametric
assumption on the
regression model

θ̂
(1)
lat , . . . , θ̂

(...)
lat , . . . π̂SYN, π̂LGREG,π̂SYN, π̂LGREG,

(β̂0, β̂1, β̂2)
(...)

ϑ̂
γ̂(...)

b

(β̂0, β̂1, β̂2)
(...)

ϑ̂γ̂(...)

b

(β̂0, β̂1, β̂2)
(...)

γ̂∗ ϑ̂∗

1a)

1b)

2)

Figure 8: The principally differing situations 1a, 1b, and 2.

E Studying compatible coarsening processes in the dif-

ferent situations

To stress the estimation of the latent variable distribution under the parametric assumptions,

we include a star into the notation. In this way, π∗xy = h′(ηxy) refers to a linear predictor ηxy

setting at least one interaction to zero, while πxy is calculated without parametric assumptions.
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From each situation (situation 1a, 1b, or 2; cf. Section 5.2 and Appendix D) we can directly

infer whether and how the intervals for the coarsening estimators sharpen due to the paramet-

ric assumptions of the regression model: In situation 1, the estimates of the latent variable

distribution fit to the data in the sense that the estimates for the parameters of the observed

world, i.e. p̂xy, x ∈ SX , y ∈ SY , are unaffected by the parametric assumptions of the regres-

sion model. In this way, one still achieves the same maximal value of the likelihood as in the

nonparametric case. Since in situation 1a also the estimated bounds of the latent variable

distribution π∗xy coincide with the ones obtained without parametric assumptions πxy (cf. the

first picture in Figure 8 in Appendix D), the estimated bounds of the coarsening parameters

remain unchanged by the parametric assumptions as well. By contrast, in situation 1b not

both estimated bounds of the coarsening parameters are obtained (cf. the second picture in

Figure 8 in Appendix D): By applying the relation in (9) for the binary case and solving for

the coarsening parameters, we obtain

px< = π∗x< · (1− qna|x<)

px< = π∗x< − π∗x< · qna|x<

qna|x< =
π∗x< − px<

π∗x<
= 1− px<

π∗x<

and similarly for q̂na|x≥. Hence, the following estimated bounds for the coarsening parameters

are achievable:

q̂na|x< ∈
[

1− p̂x<
π̂∗x<

,
π̂
∗
x< − p̂x<
π̂
∗
x<

]
and q̂na|x≥ ∈

[
1− p̂x≥

π̂∗x≥
,
π̂
∗
x≥ − p̂x≥
π̂
∗
x≥

]
, (25)

assuming all quantities in the denominator to be greater than zero. Whenever π̂∗x< = π̂x<,

then π̂∗x< = p̂x< is valid, so that the lower bound of q̂na|x< stays zero and is thus not refined

(while analogous conclusions can be made for the lower bound of q̂na|x≥). Due to π̂∗xy ≥ π̂xy

and/or π̂
∗
xy ≤ π̂xy, the bounds in (25) are generally not wider than those obtained without

parametric assumptions.

In situation 2, the estimated observed variable distribution is no longer the empirical dis-

tribution (cf. the third picture in Figure 8 in Appendix D). In general, there are no longer

multiple virtual values that are compatible with the observed variable distribution and the
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likelihood in terms of γ is maximized uniquely. This is also confirmed by the profile log-

likelihood in Figure 7, which refers to an illustrative data constellation classified to situation

2 (n00< = 60, n00≥ = 10, n00na = 10, n10< = 30, n10≥ = 40, n10na = 5, n01< = 20, n01≥ =

50, n01na = 2, n11< = 40, n11≥ = 10, n11na = 5, which does indeed not satisfy the condition in

Appendix C for belonging to situation 1).

To sum up, the parametric assumptions of the regression model may have a different impact

on the estimated coarsening parameters, from no impact (situation 1a), via a slight impact

(situation 1b) through to a very strong impact making the estimates precise (situation 2).
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