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Abstract

Imprecise probability methods are often claimed to be
robust, or more robust than conventional methods.
In particular, the higher robustness of the resulting
methods seems to be the principal argument support-
ing the imprecise probability approach to statistics
over the Bayesian one. The goal of the present paper
is to investigate the robustness of imprecise probabil-
ity methods, and in particular to clarify the termi-
nology used to describe this fundamental issue of the
imprecise probability approach.
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1 Introduction

The theories of imprecise probability replace prob-
ability measures by more general mathematical ob-
jects, which can often be identified with particular
sets of probability measures. Such sets appear natu-
rally also in Bayesian sensitivity analysis (also called
robust Bayesian analysis) [6, 27] and robust statis-
tics [4, 20]. Hence, there is a strong connection be-
tween imprecise probability and robustness. In fact,
methods resulting from the imprecise probability ap-
proaches to inference and decision making are often
claimed to be “robust” (or “more robust” than alter-
native methods) [1, 14, 36], usually without specifying
the meaning of “robust”. The goal of the present pa-
per is to investigate the robustness of imprecise prob-
ability methods. We will focus in particular on the
most developed theory of imprecise probability: the
theory of lower and upper previsions [33, 35].

The question of the robustness of imprecise proba-
bility methods is particularly important in statistics,
where the imprecise probability approach can be seen
as an alternative to the Bayesian approach. In fact,
when comparing these two approaches to statistics,

the latter has clear advantages in terms of technical
and conceptual simplicity [12, 13], also thanks to im-
portant invariances [3, 18, 21]. On the other hand, the
(higher) robustness of the resulting methods seems
to be one of the few general advantages claimed by
the proponents of the imprecise probability approach.
That is, the alleged (higher) robustness of the im-
precise probability methods seems to be the principal
argument for preferring the imprecise probability ap-
proach to statistics over the Bayesian one.

The present paper examines various aspects of the
question of the robustness of imprecise probability
methods, and in particular tries to clarify the ter-
minology used to describe this fundamental issue of
the imprecise probability approach. The paper is or-
ganized as follows. In the next section the concept of
robustness is introduced. The robustness of imprecise
probability methods is then investigated in Section 3,
which is the core of the paper. In particular, in Sub-
section 3.1 the higher credibility of imprecise prob-
ability analyses over Bayesian analyses is discussed.
These two kinds of analyses are then compared with
regard to decision making: Subsection 3.2 considers
the case when a decision has to be made, while the
case when indecision is allowed is studied in Subsec-
tion 3.3. The final section summarizes the results.

2 Robustness

Robustness means “insensitivity to small deviations
from the assumptions” [19, p. 2]. In the Bayesian
approach to inference and decision making it mainly
refers to “possible misspecification of the prior dis-
tribution” [7, p. 195]. Hence, the conclusions of a
Bayesian analysis are not robust if there are several
reasonable choices for the prior distribution and the
conclusions depend on which prior is actually chosen,
as in the following example.

Example 1 In the Bayesian framework, given an ex-
changeable sequence of Bernoulli random variables

33



X1, X2, . . ., de Finetti’s theorem [16, § 11.4] implies
that they are independent and Ber(θ)-distributed con-
ditional on the success probability θ ∈ [0, 1]. That
is, to complete the Bayesian model we must choose a
(prior) probability distribution for θ. Suppose that we
have (almost) no prior information about θ: several
prior probability distributions have been suggested in
this situation. In particular, Bayes [5] and Jeffreys
[24] proposed the prior uniform distribution of θ on
[0, 1] and of arcsin

√
θ on [0, π/2], respectively. Using

Walley’s (s, t)-parametrization of the beta distribution
[33, 34], these two proposals correspond to the priors
θ ∼ Beta(2, 1/2) and θ ∼ Beta(1, 1/2), respectively.

Assume now that we observe X1 + · · · + X7 = 6.
That is, of the first seven Bernoulli trials, six were
successes and one was a failure. In general, on the
basis of these data, the conjugate prior distribution
Beta(s, t) is updated to the posterior distribution

Beta

(
s+ 7,

s t+ 6

s+ 7

)
. (1)

In particular, Bayes’ and Jeffreys’ priors are up-
dated to the posteriors θ ∼ Beta(9, 7/9) and θ ∼
Beta(8, 13/16), respectively.

Finally, suppose that we must choose between two
courses of action with uncertain payoffs A = 5X8− 4
and B = 4 − 5X8, respectively, expressed in a linear
utility scale. This can be interpreted as choosing the
side of a bet with odds of 4 to 1 on a success in the
next Bernoulli trial, where the total stake is a fixed
small amount of money. In general, the conjugate
prior distribution Beta(s, t) leads to the posterior ex-
pected utilities

E(A) =
s

s+ 7
(5 t− 4) +

7

s+ 7

(
5

6

7
− 4

)
(2)

and E(B) = −E(A). These are plotted in Figure 1 as
functions of s ∈ (0, 3], in the case t = 1/2 and in the
limit cases t → 1 and t → 0. In particular, Jeffreys’
prior would lead to the choice of the first course of ac-
tion (that is, betting on success), since E(A) > E(B)
when (s, t) = (1, 1/2), while Bayes’ prior would lead
to the choice of the second course of action (that
is, betting on failure), since E(B) > E(A) when
(s, t) = (2, 1/2).

Therefore, in this situation the decision resulting
from the Bayesian approach is not robust, if both
Bayes’ and Jeffreys’ priors are considered as reason-
able choices in the case of (almost) no prior infor-
mation about θ. The Bayesian answer to this non-
robustness issue would be to give more careful consid-
eration to the prior information about θ, in order to
be able to identify more precisely the prior probability
distribution for θ.

Exactly as for the Bayesian approach, the conclusions
resulting from the imprecise probability approach to
inference and decision making are robust if they are
not too sensitive to small deviations from the assump-
tions in general, and to possible misspecification of the
prior (imprecise) probability distribution in particu-
lar. More precise definitions of robustness would be
possible, but would have a high degree of arbitrari-
ness, while the above informal definition is sufficient
for the scope of the present paper.

3 Imprecise Probability Methods

The robustness of some kinds of conclusions result-
ing from an imprecise probability analysis has been
studied in [32], with comforting results. However,
this study did not consider the robustness of the con-
clusions when the imprecise probabilities have been
updated in the light of new data. In this situation,
which is obviously very important for the imprecise
probability approach to statistics, the conclusions re-
sulting from an imprecise probability analysis are in
general not robust (and not more robust that the ones
resulting from a Bayesian analysis), as shown in the
following example.

Example 2 Let X be a random variable taking value
in the set {1, 2, 3}. Assume that our prior imprecise
probabilities are determined by the unique assessment
P (X) = x, where x ∈ [1, 3] is a real number. Suppose
now that we learn that the value of X is not 2. That
is, we observe the event X ∈ {1, 3}. If we update our
prior imprecise probabilities by regular extension [33,
Appx. J], then the posterior lower prevision of X is

P (X) =

{
1 if x < 2,
x if x ≥ 2,

(3)

while if we update them by natural extension, then it
is

P (X) =

{
1 if x ≤ 2,
x if x > 2,

(4)

since the prior lower probability of the observed event
is 0 if and only if x ≤ 2. In both cases (3) and (4),
the posterior lower prevision of X, as a function of
x ∈ [1, 3], has a discontinuity at x = 2.

Therefore, the posterior lower prevision of X is not
robust, if for example both values x = 1.99 and x =
2.01 are considered as reasonable choices for the prior
lower prevision. By contrast, in a Bayesian analysis
of this situation, the posterior expectation of X would
be a continuous function of the prior probability val-
ues, although it would be very sensitive to these val-
ues if the prior probability of the observed event were
very small. Anyway, in this situation the posterior
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Figure 1: Expected utilities according to the posterior distribution (1), as functions of s ∈ (0, 3], in the case
t = 1/2 and in the limit cases t→ 1 and t→ 0.

distribution of the imprecise probability analysis is in
general not more robust than the one of a Bayesian
analysis.

However, the situation analyzed in Example 2 is artifi-
cial, and consequently its importance for the imprecise
probability methods suggested in the literature is not
clear. For this reason, in the remainder of the present
section we shall consider further the situation of Ex-
ample 1, focusing on the imprecise probability model
that seems to be by far the most studied and used:
the imprecise Dirichlet model [8, 34], in the special
case of Bernoulli random variables [33, § 5.3].

The imprecise Dirichlet model satisfies some impor-
tant invariance properties, and in particular the rep-
resentation invariance principle [34]. This principle
describes a particular kind of robustness with respect
to assumptions about the statistical model, and it
cannot be satisfied by objective Bayesian analyses.
However, it can be satisfied by subjective Bayesian
analyses, and its appropriateness is questionable any-
way [34, p. 52]. On the other hand, the imprecise
Dirichlet model is highly non-robust with respect to
other aspects of the statistical model [28, 29]. There-
fore, to keep things simple, in the remainder of this
section we shall consider only the robustness with re-
spect to the choice of the prior distribution.

3.1 Credibility

From the standpoint of the theory of lower and upper
previsions, a Bayesian analysis corresponds to the spe-
cial case of an imprecise probability analysis in which
we have so much prior information that the previ-
sions are linear. Hence, from this standpoint, a lower
prevision can be interpreted as being based on less
information (or assumptions) than a linear prevision
dominating it. In this case, the Bayesian analysis can
thus be considered as less credible than the imprecise
probability analysis, according to a “law of decreas-
ing credibility” [26, p. 1], stating that the credibility
of the conclusions decreases when additional assump-
tions are made.

Such a law seems reasonable when inferences such
as confidence or credible regions are considered as
conclusions, but it does not necessarily seem reason-
able when decisions or point estimates are considered.
Anyway, for the sake of argument, let’s agree that
imprecise probability analyses are more credible than
Bayesian analyses (when the linear previsions domi-
nate the lower previsions). Does this imply that they
are also more robust?

Example 3 In the imprecise probability framework,
given an exchangeable sequence of Bernoulli random
variables X1, X2, . . ., a generalization of de Finetti’s
theorem [15] implies that they are independent and
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Ber(θ)-distributed conditional on the success proba-
bility θ ∈ [0, 1]. That is, to complete the imprecise
probability model we must choose a (prior) imprecise
probability distribution for θ. The usual choice of the
prior imprecise probability distribution in the case of
(almost) no prior information about θ is the impre-
cise Dirichlet model, which corresponds to the set of
all Beta(s, t) distributions with t ∈ (0, 1). That is,
the parameter s must still be chosen: the most popu-
lar choices appear to be s = 2 and s = 1 [8, 34, 36].
In this context, it is important to note that the im-
precise previsions resulting from different choices of
s are nested, the more imprecise corresponding to the
larger values of s.

When observing X1 + · · · + X7 = 6, the imprecise
Dirichlet model is updated by regular extension to
the posterior imprecise probability distribution cor-
responding to the set of all distributions (1) with
t ∈ (0, 1). The posterior lower and upper previsions,
P (A) and P (A), of the utility of the first course of
action described in Example 1 are the limits of (2) as
t → 0 and as t → 1, respectively. By contrast, the
posterior lower and upper previsions, P (B) = −P (A)
and P (B) = −P (A), of the utility of the second course
of action are the limits of E(B) = −E(A) as t → 1
and as t → 0, respectively. These two pairs of poste-
rior lower and upper previsions are plotted in Figure 1
as functions of s ∈ (0, 3].

The posterior imprecise previsions with s = 1 are thus
more credible (in the sense considered above) than the
posterior expectations resulting from Jeffreys’ prior,
and the posterior imprecise previsions with s = 2 are
more credible than the posterior expectations resulting
from both Bayes’ and Jeffreys’ priors. However, it
is not clear why these posterior imprecise previsions
should be more robust than the posterior expectations
of Example 1, since they too depend strongly on the
choice of s.

The question of the alleged higher robustness of im-
precise probability analyses compared to Bayesian
analyses can perhaps be better clarified by consid-
ering the choice of a probability distribution as con-
sisting of two steps. First we choose a lower prevision
P , and then we select a linear prevision P dominat-
ing it. The second step can be seen as an additional
assumption, and therefore the imprecise probability
analysis based on P is more credible than the Bayes-
ian analysis based on P . Moreover, since there is
certainly some arbitrariness in the second step, the
imprecise probability analysis can appear to be more
robust than the Bayesian analysis. However, once P
has been selected, it does not depend on the choice of
P anymore. That is, the robustness of the imprecise
probability analysis is relative to the arbitrariness in

the choice of P , while the robustness of the Bayesian
analysis is relative to the arbitrariness in the choice
of P (and not in both choices of P and P ). So it is
not clear that in general the Bayesian analysis is less
robust that the imprecise probability analysis, even
when the latter is more credible (in the above sense).

Of course, the imprecise probability analysis would be
more robust than the Bayesian analysis, if there were
no arbitrariness in the choice of the lower prevision.
In this case, “conclusions drawn from the imprecise
model are automatically robust, because they do not
rely on arbitrary or doubtful assumptions” [33, p. 5].
Unfortunately, this is never the case, because there
is always some arbitrariness in the choice of a model,
even when we choose the vacuous model. In fact,
if the vacuous prevision is a reasonable choice, then
probably also a slightly more determined imprecise
prevision would be reasonable.

In particular, the choice of the prior distribution in
the imprecise probability analysis of Example 3 does
not seem to be less arbitrary than the choice of the
prior distribution in the Bayesian analysis of Exam-
ple 1. In fact, thanks to symmetry arguments, in the
Bayesian analysis the choice of t = 1/2 is less problem-
atic than the choice of s, which must be chosen also
in the imprecise probability analysis. In analogy to
the discussion above, we could see the choice of the
prior probability distribution in Example 1 as consist-
ing of two steps. First we choose to restrict attention
to the beta distributions and we select the value of s,
while in a second step we also choose the value of t.
With this description, it appears that the imprecise
Dirichlet model (corresponding to the choices in the
first step) has one assumption less than the Bayesian
beta prior (the assumption of a particular value for
t). However, this appearance is misleading, because
in the imprecise Dirichlet model we also make a choice
about t: we choose to let it vary in the whole interval
(0, 1). In fact, replacing this interval for instance with
the interval [ε, 1− ε], for some small positive ε, could
also be a reasonable choice [11].

An important difference between the choices of s in
Examples 1 and 3 is that in the latter case the impre-
cise previsions resulting from different values of s are
nested, and this could make the choice “less crucial”
than in the former case [34, p. 12]. The importance of
this property of the imprecise Dirichlet model for the
question of the robustness of the imprecise probabil-
ity analysis of Example 3 depends on how the impre-
cise previsions are used. Therefore, in the following
subsections we shall consider the decision problem of
Example 1 in the imprecise probability framework of
Example 3.
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3.2 Decision

Several decision criteria have been suggested in the lit-
erature on imprecise probabilities [2, 17, 31]. Some of
these criteria, like Γ-maximin, induce a total preorder
on the possible decisions, and usually identify a sin-
gle optimal decision. When such criteria are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 4 Consider the decision problem of Exam-
ple 1 in the imprecise probability framework of Ex-
ample 3. In particular, Figure 1 shows that P (A) >
P (B) when s = 1, while P (B) > P (A) when s = 2.
Hence, the Γ-maximin decision would correspond to
the first course of action (that is, betting on success)
when s = 1, and to the second course of action (that
is, betting on failure) when s = 2. We would obtain
the same decisions if we used the Γ-maximax, Hurwicz
[2, 22], or interval bound dominance [17] criteria in-
stead of Γ-maximin.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if one
of these criteria is used and both s = 1 and s = 2
are considered as reasonable choices for the parame-
ter s of the imprecise Dirichlet model in the case of
(almost) no prior information about θ. In complete
analogy with the Bayesian analysis of Example 1, an
answer to this non-robustness issue would be to give
more careful consideration to the prior information
about θ, in order to be able to identify more precisely
the prior imprecise probability distribution for θ.

Other decision criteria, like maximality, E-admissi-
bility, or interval dominance, often do not identify
a unique optimal decision, and are perhaps more
in keeping with the spirit of imprecise probabilities.
When such criteria are used, imprecise probability
analyses can be seen as descriptions of the robust-
ness or non-robustness of Bayesian analyses. In fact,
if one of these criteria identifies a single optimal de-
cision in an imprecise probability analysis based on a
lower prevision P , then this decision is the unique op-
timal one in each Bayesian analysis based on a linear
prevision P dominating P (assuming that in these
Bayesian analyses there are optimal decisions). By
contrast, the two approaches diverge when the Bayes-
ian analysis is not robust, in the sense that different
linear previsions P dominating P lead to different op-
timal decisions. In this case, all these decisions are
optimal in the imprecise probability analysis based
on P , when one of the above criteria is used. How-
ever, this situation has very different meanings for
the two approaches to decision making. In the Bayes-

ian approach the non-robustness issue can be tackled
by identifying more precisely the linear prevision P ,
while in the imprecise probability approach there is
not necessarily a more precise lower prevision P that
would still be a reasonable choice.

Therefore, since the goal of decision making is to select
one of the possible decisions, in the imprecise prob-
ability approach we often still have to choose one of
the optimal decisions, when one of the above criteria
is used. This choice can be based on a second decision
criterion selected among the ones usually identifying a
single optimal decision, like Γ-maximin [25]. However,
when such two-stage decision procedures are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 5 Figure 1 shows that in the decision prob-
lem of Example 1, when s = 1 we have E(A) > E(B)
if t ∈ (0, 1) is sufficiently large, and E(B) > E(A) if
t ∈ (0, 1) is sufficiently small. That is, the decision
resulting from the Bayesian approach is not robust,
if all Beta(1, t) distributions with t ∈ (0, 1) are con-
sidered as reasonable choices for the prior probability
distribution. Therefore, in the imprecise probability
framework of Example 3, when s = 1 both courses
of action would correspond to optimal decisions ac-
cording to the criteria of maximality, E-admissibility,
or interval dominance. Exactly the same holds in the
case with s = 2. By contrast, when s = 1/3 these
criteria would lead to a single optimal decision, cor-
responding to the first course of action (that is, bet-
ting on success), since in this case P (A) > P (B), as
can be seen in Figure 1. That is, the decision result-
ing from the Bayesian approach is robust, if only the
Beta(1/3, t) distributions with t ∈ (0, 1) are considered
as reasonable choices for the prior probability distri-
bution.

However, if the goal of the imprecise probability analy-
sis is decision making (and not the study of the robust-
ness or non-robustness of Bayesian analyses), then
when s = 1 or s = 2 we still have to select one of
the two possible decisions. If we choose one of the
four criteria considered in Example 4 as the second
decision criterion in a two-stage decision procedure,
then we obviously obtain the same conclusions as in
Example 4.

Another possibility (besides a second criterion in a
two-stage procedure) for choosing a decision when
there are multiple optimal decisions, is to select it
arbitrarily. Of course, there is no real hope that the
resulting decisions can be robust, since arbitrariness is
antithetical to robustness. However, one could main-
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tain that such an arbitrary choice cannot be non-
robust, because from the point of view of the deci-
sion criterion all optimal decisions are in a certain
sense “equivalent”. But even from this point of view
the decisions resulting from the imprecise probability
approach are not robust in general, as shown in the
following example.

Example 6 Consider again the decision problem of
Example 1 in the imprecise probability framework of
Example 3, with as decision criterion maximality, E-
admissibility, or interval dominance. In Example 5
we have seen that in this case the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
sions when s = 1. Hence, if we would choose one of
the two optimal decisions arbitrarily when s = 1, then
we could choose the second course of action (that is,
betting on failure), which does not correspond to the
single optimal decision when s = 1/3.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if both
s = 1/3 and s = 1 are considered as reasonable choices
for the parameter s of the imprecise Dirichlet model.
Of course, s = 1/3 is not a usual choice for this param-
eter, but it would suffice to slightly modify the decision
problem, in order to obtain that the difference in the
decisions is between the cases s = 1 and s = 2 (instead
of s = 1/3 and s = 1). For instance, it would suffice to
consider the decision problem corresponding to choos-
ing the side of a bet with odds of 5 to 2 (instead of 4
to 1) on a success in the next Bernoulli trial, where
the total stake is a fixed small amount of money (in
this situation, the decision resulting from the Bayes-
ian approach would be the same for both Bayes’ and
Jeffreys’ priors: betting on success).

Hence, in this subsection we have seen that when a
decision has to be made, the imprecise probability ap-
proach is in general not more robust than the Bayes-
ian one. In particular, the choice of s in the imprecise
probability analyses of Examples 4, 5, and 6 does not
appear to be “less crucial” than in the Bayesian anal-
ysis of Example 1. In this context, it is important
to note that the results would remain substantially
unchanged if randomized decisions were allowed in
these examples. In this case, we would have infinitely
many possible decisions, but the (sets of) randomiza-
tion probabilities of the optimal decisions would still
change in a discontinuous way at either s = 4/3 or
s = 1/2 (depending on the example being considered).

3.3 Indecision

As discussed in Subsection 3.2, decision criteria like
maximality, E-admissibility, or interval dominance of-
ten do not identify a unique optimal decision, when
used in an imprecise probability analysis. Instead of
choosing a decision from the set of all optimal de-
cisions, the set itself is sometimes considered as the
conclusion resulting from the imprecise probability
approach [1, 14, 36]. That is, (partial) indecision is
sometimes allowed.

In this case, the set of all possible decisions of the
original decision problem is practically replaced by its
power set (without the empty set). The resulting new
decision problem is in a certain sense smoother than
the original one, because the indecision about two
(originally) possible decisions can be seen as a mid-
dle course between them. Therefore, non-robustness
issues regarding the new decision problem can be less
serious than those regarding the original one. How-
ever, the Bayesian approach too can be applied to
the new decision problem, as shown in the following
example.

Example 7 In Example 5 we have considered the de-
cision criteria of maximality, E-admissibility, and in-
terval dominance for the decision problem of Exam-
ple 1, in the imprecise probability framework of Ex-
ample 3. We have seen that the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
sions when s = 1 or s = 2. Hence, if indecision is al-
lowed, then we would stick to the first course of action
when s = 1/3, but we would have indecision between
the two courses of action when s = 1 or s = 2.

In order to apply the Bayesian approach when indeci-
sion is allowed, we can define the utility C of the in-
decision between the two courses of action. Assuming
risk aversion, this utility must be larger than the util-
ity of choosing one of the two courses of action at ran-
dom (by tossing a fair coin) [37]: that is, C > 0. The
choice C = 1/10 is plotted in Figure 1: we can see that
in this case the decision resulting from the Bayesian
approach would still be the first course of action (that
is, betting on success) when (s, t) = (1/3, 1/2), and the
second course of action (that is, betting on failure)
when (s, t) = (2, 1/2), but it would be the indecision be-
tween the two courses of action when (s, t) = (1, 1/2).

The new decision problem in Example 7 can be con-
sidered as smoother than the original one in Exam-
ple 1, because in a certain sense there is a new possible
choice (the indecision) somewhere in between the two
courses of action. In particular, with the new decision
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problem the choice of s is perhaps “less crucial” than
with the original one, but this holds for the Bayes-
ian analysis as well as for the imprecise probability
analysis.

Apparently, the imprecise probability approach has
the advantage of not needing to define the utilities of
the cases of (partial) indecision. However, this ap-
pearance can be misleading. First, the definition of
these utilities can be avoided in the Bayesian approach
too, for instance by replacing the posterior expecta-
tions of the utilities of the original decisions with their
highest posterior density intervals (for a given proba-
bility level), and using interval dominance as a deci-
sion criterion. Second, and most important, the defi-
nition of the utilities for the cases of (partial) indeci-
sion is necessary anyway to evaluate and compare the
resulting imprecise probability methods: much work
has recently been done in this direction [37]. The
trouble is that the imprecise probability methods are
obtained on the basis of one decision problem (with-
out utilities for the cases of indecision), and are then
evaluated on the basis of another (with utilities for
the cases of indecision).

The difficulty in evaluating and comparing imprecise
probability methods is strictly related to a fundamen-
tal issue in the imprecise probability approach to in-
ference and decision making: the difficulty in com-
paring models with different degrees of imprecision
[30]. The discussion of this issue goes far beyond the
scope of the present paper, but it is important to note
the connection with the difficulty in the choice of the
parameter s of the imprecise Dirichlet model of Ex-
ample 3, since the degree of imprecision of this model
increases with s.

4 Conclusion

Imprecise probability methods are often claimed to be
robust, or more robust than Bayesian methods. Some-
times the expression “more robust” is simply used as
a synonym for “more imprecise” or “less determinate”
[23]. However, this use is misleading, if not wrong. In
fact, “more robust” has a positive connotation, which
“more imprecise” or “less determinate” do not have,
and which derives from its usual interpretation in sci-
ence and engineering as meaning something like “less
sensitive to small changes in the conditions or in the
assumptions”.

In particular, in the Bayesian approach to infer-
ence and decision making, robustness mainly refers
to changes in the choice of prior probability distri-
bution. A Bayesian sensitivity analysis (also called
robust Bayesian analysis) is the study of the robust-
ness of the conclusions of a Bayesian analysis. The

fact that Bayesian sensitivity analyses are often per-
formed by letting the prior vary in a set of proba-
bility distributions can suggest the idea that impre-
cise probability analyses are robust (since imprecise
probability measures can be identified with partic-
ular sets of probability measures). In fact, as dis-
cussed in Subsection 3.1, imprecise probability analy-
ses can perhaps be considered as more credible than
Bayesian ones, and as noted in Subsection 3.2, they
can be seen as descriptions of the robustness or non-
robustness of Bayesian analyses, when decision crite-
ria like maximality, E-admissibility, or interval domi-
nance are used. However, the robustness of imprecise
probability analyses does not refer to the variability of
a (precise) prior in a set of probability distributions,
but rather to the variability of the (imprecise) prior
in a set of imprecise probability distributions.

Another source of confusion about the robustness of
imprecise probability methods (besides the meaning
of “robust” in the expression “robust Bayesian analy-
sis”) seems to be the idea that they are allowed to be
inconclusive, while Bayesian methods are not. In fact,
the Bayesian approach to a particular decision prob-
lem is sometimes compared to the imprecise proba-
bility approach to a modified version of the decision
problem, in which (partial) indecision is allowed. As
discussed in Subsection 3.3, the new decision problem
is in a certain sense smoother than the original one,
and so robustness can be less of an issue. However,
both approaches can be applied to both decision prob-
lems, and a fair comparison is possible only if they are
applied to the same one.

In conclusion, imprecise probability methods are in
general not robust, and not more robust than Bayes-
ian methods. The robustness of the imprecise proba-
bility approach to inference and decision making can
be increased by introducing a second-order possibility
distribution, allowing a smoother and more efficient
updating rule [9, 10], but this goes beyond the scope
of the present paper, and will be the subject of future
work.
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