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Abstract

The naive credal classifier extends the classical naive
Bayes classifier to imprecise probabilities, substitut-
ing the imprecise Dirichlet model for the uniform
prior. As an alternative to the naive credal classi-
fier, we present a likelihood-based approach, which
extends in a novel way the naive Bayes towards impre-
cise probabilities, by considering any possible quan-
tification (each one defining a naive Bayes classifier)
apart from those assigning to the available data a
probability below a given threshold level. Besides the
available supervised data, in the likelihood evaluation
we also consider the instance to be classified, for which
the value of the class variable is assumed missing-
at-random. We obtain a closed formula to compute
the dominance according to the maximality criterion
for any threshold level. As there are currently no
well-established metrics for comparing credal classi-
fiers which have considerably different determinacy,
we compare the two classifiers when they have com-
parable determinacy, finding that in those cases they
generate almost equivalent classifications.

Keywords. Classification, naive credal classifier,
naive Bayes classifier, likelihood-based learning.

1 Introduction

Classification, understood as the problem of assigning
class labels to instances described by a set of features,
is one of the major problems of AI, with lots of impor-
tant applications, including pattern recognition, pre-
diction, and diagnosis. Bayesian approaches to clas-
sification are particularly popular and effective. In
particular, the naive Bayes classifier (NBC; e.g., see
[11, Chap. 17]), assumes the conditional independence
of the feature variables given the class; because of this
unrealistic assumption, NBC requires the estimation
of only a few parameters from the data. Yet, this
assumption typically biases the probability computed
by NBC which, regarding all the features as indepen-

dent pieces of evidence, tends to assign a excessively
high probability to the most probable class. The prob-
lem is emphasised in the presence of many features,
among which could easily exist correlations [9]. How-
ever, NBC generally achieves a good accuracy under
0-1 loss; this means that, despite the biased proba-
bilities, it produces good ranks among the compet-
ing classes [7]. The parameters are typically learned
in a Bayesian way with uniform prior. Maximum-
likelihood quantification has the advantage of being
unbiased and independent from the prior specifica-
tion, but generally leads to inferior classification per-
formance, especially on data sets where the contin-
gency tables, which contain the counts of the joint
occurrences of specific values of the features and the
class, are characterised by several zeros [8, 12] (see
also Example 3).

The naive credal classifier (NCC, [18]), a generali-
sation of the NBC based on the theory of imprecise
probability [15], attempts to make classification inde-
pendent of the choice of the prior in a different way.
NCC learns from data through the imprecise Dirichlet
model (IDM, [16]); this corresponds to adopting a set
of priors, which model a condition of near-ignorance
about the model parameters. A NCC is equivalent to
a collection of NBCs; while NBC returns the single
class with highest probability according to the poste-
rior probability mass function, NCC can in some cases
suspend the judgment, by returning a set of classes
rather than a single one. This provides a cautious
and robust classification. A similar approach could
be obtained by applying a rejection option to NBC,
namely by returning more classes when the posterior
probability estimated for the most probable class does
not exceed a certain threshold. However, the rejec-
tion option requires accurate probability estimates to
be effective, which is hardly the case for the NBC.

Of course, IDM is not the only technique to learn sets
of distributions from data. Among others, likelihood-
based approaches to the learning of imprecise-proba-
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bilistic models from data [3, 14] can be regarded as an
alternative to the IDM. Loosely speaking, the idea is
to consider, instead of the single maximum-likelihood
estimator, all the models whose likelihood is above a
certain threshold level.

In this paper we investigate how likelihood-based
techniques apply to NCC quantification. To do that,
we keep the same independence assumptions of the
NBC (and of the NCC), but we change the way the
model is quantified. We call the resulting model
likelihood-based naive credal classifier (LNCC). This
model is associated with a classification algorithm
which computes the set of unrejected classes accord-
ing to the maximality criterion [15] (exactly as the
NCC does) for any threshold level.

A notable feature of our approach is that, in the likeli-
hood evaluation, we do not only consider the available
(learning) data set, but also the instance to be classi-
fied, whose value of the class variable is assumed to be
missing-at-random. This is important to obtain more
accurate classification performances when coping with
zero counts in the data set.

The paper is organised as follows. We first review
some background material about the naive Bayes
(Section 2.1) and credal (Section 2.2) classifiers and
the likelihood-based approaches to the learning of
imprecise-probabilistic models from data (Section 3).
Then, in Section 4, we introduce the LNCC and ob-
tain an analytic inference formula to compute the set
of candidate optimal classes. Numerical tests are in
Section 5. Conclusions and outlooks are finally in Sec-
tion 6, while the proofs are in the appendix.

2 Naive Classifiers

In this section we review the necessary background in-
formation about classifiers developed under the naive
assumption (i.e., independence between features given
the class). First let us introduce the general problem
of classification together with the necessary notation.

We use uppercase for the variables, lowercase for
the states, calligraphic for the possibility spaces, and
boldface for sets of variables. Let C denote the
class variable, with generic value c, taking values
in a finite set C. Similarly, we have m features,
F := (F1, . . . , Fm), each one taking values in the fi-
nite set Fj , j = 1, . . . ,m.1 Assume that the avail-
able data are d joint observations of these variables,
say D := {(c(i), f (i)

1 , . . . , f
(i)
m )}di=1, with c(i) ∈ C and

f
(i)
j ∈ Fj , for each i = 1, . . . , d and j = 1, . . . ,m. In-

formation associated with the data set D is described
1We focus on classification of discrete features. A discussion

on the extension to continuous variables is in the conclusions.

by a count function n returning the number of ele-
ments of the data set D satisfying a condition to be
specified in its argument. E.g., n(C = c) is the num-
ber of instances where the class has value c ∈ C, while
n(C = c, Fj = fj) is the number of instances where
C has value c and the j-th feature has value fj . For
sake of notation, we denote these counts as n(c) and
n(c, fj), and similarly for the others, with n(·) = d.

Given an instance of the features f̃ = (f̃1, . . . , f̃m),
classification is the problem of assigning it a single
class label or, as in the case of Section 2.2, a set of
them, all of which are candidates to be the correct
category. A classifier always returning a single class
is called precise, and credal otherwise.

2.1 Naive Bayes Classifier

A probabilistic approach to classification consists of
learning from the data D a joint probability mass
function for the whole set of variables (C,F). Let the
unknown chances of this distribution be denoted by
θc,f for each (c, f) ∈ C×F1× . . .×Fm. Once we learn
these chances, we assign to the instance f̃ the class
label maximising the posterior (which is proportional
to the joint) probability, i.e.,

arg max
c∈C

θc,f̃ .

As the number of parameters specifying the joint dis-
tribution grows exponentially with the number of fea-
tures, such a probabilistic approach is generally too
demanding, unless we make some assumption about
the independence relations between the variables. A
notable example is the so-called naive assumption,
which says that, given the class variable, the features
are conditionally independent from each other.2 This
induces in the joint the following factorisation:

θc,f := θc ·
m∏

j=1

θfj |c, (1)

where θc is the (unconditional) chance for C = c,
and similarly for the conditional ones. Equation (1)
makes it possible to assess the joint distribution, and
hence perform classification, by means of a number of
parameters which is linear in the number of features
and classes. Let θ denote the whole set of chances
to be quantified on the right-hand side of (1) and Θ
the corresponding set of possible assignments. The
parameter θ is quantified in a Bayesian way; given a
Dirichlet prior over Θ, we obtain the following poste-

2We say that A and B are conditionally independent given
C if P (a, b|c) = P (a|c) · P (b|c), for each a, b, and c.
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rior estimates:

θc =
n(c) + s t(c)
n(·) + s

, (2)

θfj |c =
n(c, fj) + s t(c, fj)

n(c) + s t(c)
, (3)

where Walley’s parametrisation of the Dirichlet distri-
bution is employed. In particular, s can be thought
of as a number of hidden instances, in the usual inter-
pretation of conjugate Bayesian priors as additional
samples. The parameters t(·) can be interpreted as
the proportion of hidden instances of a given type;
for instance, t(c) is the expected proportion of hidden
instances for which C = c.

In particular, non-informative specifications can be
obtained by Perks’ prior, which means t(c) := |C|−1

and t(c, fj) := |Fj |−1|C|−1 for each c ∈ C, fj ∈ Fj ,
j = 1, . . . ,m, and s = 1. In the language of Bayesian
networks, this is also known as BDe [11, Chap. 17].

2.2 Naive Credal Classifier

The classification performances of the NBC can be
quite sensitive to the choice of the prior. In a situa-
tion where different priors return different class labels,
a conservative approach consists of taking multiple
priors as a model of a condition of prior (near) igno-
rance about the model parameters, and hence learning
a posterior independently for each prior. This can be
done by means of the imprecise Dirichlet model (IDM,
[16]), for which the “precise” specification of the NBC
Dirichlet prior is relaxed, and its parameters are free
to vary in the following set, with minimal constraints:

T :=



t

∣∣∣∣∣∣

∑
c∈C t(c) = 1∑
fj∈Fj

t(c, fj) = t(c),∀c ∈ C,∀j
t(c, fj) > 0,∀(c, fj) ∈ C × Fj ,∀j



 . (4)

Each t ∈ T corresponds to a different Dirichlet prior
and hence a different NBC quantification. The collec-
tion of all these NBCs is called naive credal classifier
(NCC, [17]), and provides a collection of posterior dis-
tributions for the class variable given the feature of
the instance to be classified. In order to decide which
class labels to assign to the instance, the maximality
criterion [15] is adopted: a class is rejected if there is
another class that is more probable according to every
distribution. Thus, in order to perform classification
with the NCC, for each c′, c′′ ∈ C, we have to test
whether or not c′ dominates c′′, i.e.,3

inf
t∈T

Pt(c′, f̃)
Pt(c′′, f̃)

> 1, (5)

3Note that the ratio between conditional probabilities can
be equivalently described as a ratio between joint probabilities.

where Pt is the NBC quantification associated to t.
From (1), (2) and (3), we can rewrite the objective
function of our optimisation problem in (5) as4

[
n(c′) + s t(c′)
n(c′′) + s t(c′′)

]1−m m∏

j=1

n(c′, f̃j)
n(c′′, f̃j) + s t(c′′, f̃j)

,

and hence check dominance by solving the corre-
sponding optimisation with the constraints in (4).

Counterintuitive behaviors of NCC take place in pres-
ence of zero counts; in particular (a) an attribute Fj

such that n(c′, f̃j) = 0 prevents c′ from dominat-
ing any other class (see Example 3); (b) a class c′

such that n(c′) = 0 is identified as non-dominated for
most instances. These behaviors were first observed
in [17]; a solution to these problems, which make the
NCC unnecessarily imprecise, has been studied in [4],
proposing an ϵ-contamination of the IDM prior with
the uniform prior of the NBC: this corresponds to a
slight modification of the set T , obtained by rewrit-
ing the constraints in (4) in the form ϵ |C|−1 ≤ t(c) ≤
(1−ϵ)+ϵ |C|−1, and similarly for t(c, fj). Such a NCC
extension is denoted as NCCϵ.5

3 Likelihood-Based Learning of
Imprecise-Probabilistic Models

Coping with multiple priors as in the IDM is not the
only possible approach to learn imprecise-probabilis-
tic models from data. In a likelihood-based approach,
we can simply start by considering a collection of can-
didate models, and then only keep those assigning
to the available data a probability beyond a certain
threshold. We introduce these ideas by means of an
example.

Example 1. Consider a Boolean variable X, for
which N observations are available, and n of them
report the state true. If θ ∈ [0, 1] is the chance
that X is true, the likelihood induced by the observed
data is lik(θ) := θn · (1 − θ)N−n and its maximum
is attained at θ̂ = n

N . For each α ∈ [0, 1], we
can (numerically) compute the values of θ such that
lik(θ) ≥ α lik(θ̂). Figure 1 depicts the behaviour of
these intervals (which can be also interpreted as con-
fidence intervals for θ; e.g., see [10]) for increasing
sample size.

The approach considered in the above example can
be easily extended to the general case, and can be
interpreted as a way of updating imprecise probabil-
ities [1, 13], in the following sense. Consider a credal

4Note that a partial optimisation has been already per-
formed in the numerators of the terms in the product.

5Note that NCC0 is the NCC, while NCC1 is the NBC.
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Figure 1: Comparison between probability intervals
obtained by likelihood-based learning (α = .85, black
points) and IDM (s = 2, grey points) for Example 1.
The plot shows the upper bounds of the interval prob-
ability that the variable is true as a function of the
sample size N , when n

N = 1
2 . The plot for the lower

bounds would be symmetric to this one.

set P, i.e., a collection of probability distributions all
over the same variable. Assume the elements of P are
indexed by a parameter θ taking values in a set Θ,
i.e., P := {Pθ}θ∈Θ. Given the available data D, let us
consider the corresponding normalised likelihood:

lik(θ) :=
Pθ(D)

supθ′∈Θ Pθ′(D)
. (6)

The likelihood-based approach to learning consists of
removing from P the distributions whose normalised
likelihood is below some threshold. Thus, given α ∈
[0, 1], we consider the following (smaller) credal set:

Pα := {Pθ}θ∈Θ : lik(θ)≥α. (7)

Clearly, Pα=1 is typically a “precise” credal set in-
cluding only the maximum-likelihood distribution,
while Pα=0 = P. In principle, the original credal set
P can be obtained by means of some other imprecise-
probabilistic learning technique, which is indeed re-
fined by the likelihood-based approach. Likelihood-
based learning is said to be pure, if the credal set
P includes all the possible distributions that can be
specified over the variable under consideration (or, as
in the next section, at least all those satisfying the
structural judgements about symmetry and indepen-
dence characterising the model under consideration).

4 Likelihood-Based Naive Credal
Classifier

Let us consider a pure likelihood-based learning of
the model probabilities of the naive classifier. Thus,
let P denote the credal set associated to a NCC with

vacuous quantification of the model probabilities (i.e.,
each chance is only required to belong to the [0, 1] in-
terval). Let the parameter θ with values in Θ denote a
parametrisation of this credal set, i.e., P := {Pθ}θ∈Θ,
where θ is a NBC quantification. Given the available
data D, let us consider the normalised likelihood as
in (6), and hence the credal set Pα ⊆ P as in (7).

We call likelihood-based naive credal classifier (LNCC,
called naive hierarchical classifier in [3]) the collection
of NBCs in the credal set Pα. This only provides an
implicit specification of the model probabilities.6 Yet,
we can already describe how LNCC-based classifica-
tion is intended. The same dominance criterion (i.e.,
maximality) as for the NCC is considered, and we say
that c′ dominates c′′ iff

inf
θ∈Θ : lik(θ)≥α

Pθ(c′, f̃)
Pθ(c′′, f)

> 1. (8)

In order to perform classification with the LNCC, we
should discuss (8) for each pair of classes c′, c′′ ∈ C.
This task will be considered in Section 4.1. First, let
us note that, when evaluating the likelihood lik, we do
not only consider the data set D, but also the instance
under consideration f̃ . The value of the class variable
for this instance is unavailable (i.e., missing), no mat-
ter what its actual value is. Thus, the probability
we should take into account for the overall likelihood
evaluation is the product of Pθ(D) and

Pθ(f̃) :=
∑

c∈C

[
θc

m∏

i=1

θf̃i|c

]
. (9)

Note that we perform classification by means of the
dominance test in (8) for each c′, c′′ ∈ C. Thus, as
we cope with the likelihood separately for each pair
of classes, a simplification assumption consists of as-
suming that, when checking whether c′ dominates c′′,
the instance under consideration can only be c′ or c′′.
This basically means to restrict the sum in (9) only to
c′ and c′′. In order to see how this kind of classifica-
tion works in practice consider the following example.
Example 2. Consider a LNCC with a Boolean class
C and a single Boolean feature F . In this setup, a
NBC specification is provided by the three-dimensional
parameter θ := (θc, θf |c, θf |¬c), taking values in Θ :=
[0, 1]3. Apart from (c, f) which appears five times, the
other three possible combinations for the class/feature
values appear only once in the data set. To decide
whether or not C = c dominates C = ¬c, when the
instance to be classified is F = f , we first compute
the likelihood of the available (supervised) data:

lik(θ) = θ6c ·(1−θc)2 ·θ5f |c ·(1−θf |c) ·θf |¬c ·(1−θf |¬c).

6Note that, if regarded as a credal net [6], the LNCC (as the
NCC) has non-separately specified credal sets.
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Figure 2: LNCC-based classification. The dominance
test in Example 2 is solved by generating a random
sample of 3000 NBC quantifications θ and depict-
ing for each θ the posterior and the likelihood as the
point (Pθ(c|f), lik(θ)). Note that in the Boolean case
Pθ(c|f) > 1

2 is an equivalent dominance condition.
The upper envelope of the points in the limit of an
infinite sample size (see Section 4.1) is depicted in
grey. Horizontal lines describe the cuts for different
α-values. Black lines are based on the random sample,
while those referred to the upper envelope are grey.

As we also want to consider the instance to be clas-
sified, we multiply this likelihood by the chance that
F = f , which according to (9) is

θc θf |c + (1− θc) θf |¬c.

For each θ ∈ Θ, c dominates ¬c if

θc θf |c
(1− θc) θf |¬c

> 1.

To perform classification with the LNCC, we just have
to check whether or not such a dominance relation is
satisfied for each θ whose likelihood is not below the
maximum likelihood multiplied by α. Figure 2 reports
a Monte Carlo solution of this problem. Note that we
have dominance for high threshold levels (e.g., α =
.75), and no dominance for low levels (e.g., α = .2).

4.1 Statistical Inference with LNCC

In the previous section we defined the LNCC corre-
sponding to a given α level, and described how we
intend to perform inference based on this model. Yet,
the sampling-based method considered in Example 2
is not necessary. In this section, we provide a classifi-
cation algorithm for the LNCC based on a parametric
formula for the upper envelope of the likelihood.

Let us therefore, for a generic classification problem,
consider the dominance test between c′ and c′′ for an

instance f̃ to be classified by means of the LNCC for a
given threshold α on the basis of the data D. The idea
is to parametrise the upper envelope of the likelihood
(also called profile likelihood [2, 14]) by means of a
parameter t ranging on the interval [a, b], where

a :=− min
j=1,...,m

n(c′, f̃j)− 1
2
,

b := min
j=1,...,m

n(c′′, f̃j) +
1
2
.

In order to characterise the profile likelihood of the
LNCC, we employ the following two results.

Theorem 1. For each θ ∈ Θ and each pair of classes
c′, c′′ ∈ C, there is a unique t ∈ [a, b] such that

Pθ(c′, f̃)
Pθ(c′′, f̃)

=
[n(c′)+ 1

2+t]
∏m

j=1
[n(c′,f̃j)+

1
2+t]

[n(c′)+ 1
2+t]

[n(c′′)+ 1
2−t]

∏m
j=1

[n(c′′,f̃j)+
1
2−t]

[n(c′′)+ 1
2−t]

, (10)

where x
0 is interpreted as +∞ when x is positive, and

as 1 when x = 0. Moreover, the right-hand side of
(10) is a continuous, strictly increasing function of
t ∈ [a, b].

Theorem 1 defines a many-to-one relation between the
elements of Θ and those of the interval [a, b]. For each
t ∈ [a, b], let Θt denote the set of all elements of Θ for
which (10) is satisfied.

Theorem 2. Let L, l′, l′′, p′, p′′ be the functions on
[a, b] defined by

L(t) = sup
θ∈Θt

lik(θ),

l′(t) = [n(c′)+ 1
2+t]n(c′) ∏m

j=1
[n(c′,f̃j)+

1
2+t]n(c′,f̃j)

[n(c′)+ 1
2+t]n(c′) ,

l′′(t) = [n(c′′)+ 1
2−t]n(c′′) ∏m

j=1
[n(c′′,f̃j)+

1
2−t]n(c′′,f̃j)

[n(c′′)+ 1
2−t]n(c′′) ,

p′(t) = [n(c′)+ 1
2+t]

∏m
j=1

[n(c′,f̃j)+
1
2+t]

[n(c′)+ 1
2+t] ,

p′′(t) = [n(c′′)+ 1
2−t]

∏m
j=1

[n(c′′,f̃j)+
1
2−t]

[n(c′′)+ 1
2−t] ,

for all t ∈ [a, b], where both 0
0 and 00 are interpreted

as 1. Then
L ∝ l′ l′′ (p′ + p′′). (11)

These two theorems can be used to perform LNCC-
based classification without sampling. We first evalu-
ate the maximum t̂ of L(t). Then, we check whether,
for the values t ∈ [a, b] such that L(t) ≥ αL(t̂), the
ratio on the right-hand side of (10) is always bigger
than one. If so, we have that c′ dominates c′′. To
see how this works, consider the classification task in
Example 2. When testing whether or not c dominates
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Figure 3: Profile likelihood functions for P (c|f̃1, f̃2) in
Example 3: with and without the probability of the
new instance (black and grey curves, respectively).

¬c, we have [a, b] = [− 11
2 ,

3
2 ]. For each t ∈ [a, b], the

right-hand side of (10) rewrites as 11+2t
3−2t , while the

likelihood in (11) is proportional to (11 + 2t)5 (3− t);
the resulting profile likelihood is depicted in Figure 2
(grey curve).

Example 3. Consider a LNCC with a Boolean class
C and two features F1, F2. We want to classify a
new instance with features f̃1, f̃2, on the basis of a
data set D containing n(·) = 100 instances. In the
data set D, the class c has been observed n(c) = 50
times, always in conjunction with the feature f̃1, but
never with the feature f̃2; that is, n(c, f̃1) = 50 and
n(c, f̃2) = 0. Of the n(¬c) = 50 observed instances
with class ¬c, one had the feature f̃1, and another
one had the feature f̃2; that is, n(¬c, f̃1) = 1 and
n(¬c, f̃2) = 1. Figure 3 shows the profile likelihood
function for P (c|f̃1, f̃2) (compare with Figure 2) when
the probability (9) of the new instance is considered
in the likelihood function (black curve), and when it
is not considered (grey curve).

Hence, the LNCC classifies the new instance as c
when α is sufficiently large (more precisely, when
α ≥ 0.22); the same classification is obtained by the
NBC with uniform prior and by the NCCϵ (for suffi-
ciently large ϵ). By contrast, without using the proba-
bility (9) of the new instance in the likelihood function,
the classifier would return both classes (if α ≤ 0.98),
as does the standard NCC (that is, NCCϵ with ϵ = 0),
while the NBC with maximum-likelihood quantifica-
tion returns the class ¬c (at least when the usual like-
lihood function, without the probability of the new in-
stance, is maximised). This is an example of the zero-
counts issue discussed at the end of Section 2.2, which
is the main reason why the ϵ-modification of NCC has
been introduced and why we consider also the probabil-
ity (9) of the new instance in the likelihood function.

4.2 Computational Complexity

The classification of an instance requires the iteration
of the dominance test over all the possible pair of class
labels, this task being clearly quadratic in |C|. In or-
der to perform the dominance test, the function L(t)
should be evaluated. This requires a number of op-
erations which is linear in the number of attributes
m. The same order of magnitude is required to com-
pute the right-hand side of (10). In our preliminary
implementation, τ equally spaced points over the in-
terval [a, b] have been considered. The numerical op-
timisation of the likelihood and identification of the
α-cut was therefore simply performed by considering
the value of the function L(t) in these points. For
the experiments, we adopted τ = 250; empirically, in-
creasing τ beyond this value resulted only in negligible
differences in the classifications produced by LNCC.
Thus, for practical purposes, we can consider τ as a
constant, and we obtain O(m|C|2) complexity (as for
the NCC, [17]).

5 Experiments

To describe the performance of a credal classifier, we
need multiple indicators. In particular, we adopt the
following:

• determinacy (Det): the percentage of instances
classified with a single class;

• single accuracy (Sgl-acc): the accuracy over the
instances classified with a single class;

• set-accuracy : the accuracy over the instances
classified with more classes;

• indeterminate output size: the average number
of classes returned when the classification is in-
determinate.

Note that when NCC is determinate, it returns the
same class as NBC; this is due to the uniform prior be-
ing included in the IDM. This cannot be guaranteed
for LNCC; however in our experiments LNCC, when
precise, generally returned the same class as NBC.
Thus, the single accuracy of NCC [resp. LNCC]
is equivalent to the accuracy achieved by NBC on
the instances determinately classified by NCC [resp.
LNCC]. A credal classifier does a good job at isolating
hard-to-classify instances if its Bayesian counterpart
has low accuracy on the instances which are indeter-
minately classified. We denote as NBC-I the accuracy
of naive Bayes on the instances indeterminately clas-
sified by the credal classifier at hand (NCC or LNCC,
depending on the context). A large drop between sin-
gle accuracy and NBC-I means thus that the credal
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classifier is effective at isolating instances which are
hard to classify.

Unfortunately, there is so far no single indicator
which can reliably compare two credal classifiers. The
discounted-accuracy (D-acc, [5]) has been proposed
for this purpose; it is defined as 1

n

∑
i∈acc

acci

|outputi| ,
where, with reference to the i-th instance, acci de-
notes whether the set of returned classes contains or
not the actual one and |outputi| denotes the num-
ber of classes returned. On each instance, the clas-
sifier is thus given 0 if inaccurate or 1/|outputi| if
accurate. Yet, discounted-accuracy sees as equiva-
lent, in the long term, a vacuous classifier which re-
turns all classes and a random classifier which re-
turns a single class at random. However, the vacu-
ous classifier should be generally preferred over the
random one; this is clear if one thinks for instance
of the diagnosis of a disease. In a way the vacuous,
unlike the random, is aware of being ignorant; yet
discounted-accuracy does not capture this point. In
fact, the design of metrics to rank credal classifiers
is an important open problem. Moreover, when deal-
ing with credal classifiers with considerably different
determinacy, discounted-accuracy favors the more de-
terminate ones. We thus try to compare LNCC and
NCC (in its NCCϵ generalisation) when they have the
same determinacy. For this purpose we tried differ-
ent values of ϵ for NCCϵ and α for LNCC; more pre-
cisely, denoting also the value of α as a subscript,
we considered: NCC0.05, NCC0.15, NCC0.25, NCC0.35;
LNCC0.35, LNCC0.55, LNCC0.75, LNCC0.95.

5.1 Artificial Data

We generated artificial data sets, considering a bi-
nary class and 10 binary features, under a naive
data generation mechanism. We set the marginal
chances of classes as uniform, while we drew the
conditional chances of the features under the con-
straint |θfj |c′ − θfj |c′′ | ≥ 0.1 for each c′, c′′ ∈ C and
j = 1, . . . ,m; the constraint forced each feature to be
truly dependent on the class. We drew such chances
20 times uniformly at random and we consider the
sample sizes d ∈ {25, 50, 100}. For each pair (θ, d) we
generated 30 training sets and a huge test set of 10000
instances. For each sample size, we thus perform 20
θ × 30 trials = 600 training/test experiments. Note
that, dealing with two classes, set-accuracy is fixed to
100% and indeterminate output size to 2; we do not
need thus to consider these indicators.

In Figure 5 we show how the determinacy of NCC
and LNCC varies with the sample size, choosing pairs
{α, ϵ} which produce reasonably comparable curves.
Interestingly, NCC is more sensitive than LNCC to
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Figure 5: Determinacy of NCC and LNCC as a func-
tion of the sample size d.

Classifier n Det Sgl-acc D-acc NBC-I

NCC0.25 25 90.1 90.4 86.5 54.5
LNCC0.75 25 90.1 90.4 86.6 52.8
NCC0.05 50 91.7 91.5 88.2 57.4
LNCC0.75 50 91.2 91.8 88.2 55.3
NCC0.25 100 97.9 90.5 89.7 51.2
LNCC0.95 100 97.7 90.6 89.7 51.4

Table 1: Performance indicators for NCC and LNCC,
for choices of α and ϵ leading to close determinacies;
each number is an average over 600 experiments.

the sample size d; the determinacy of NCC steeply
increases with d, unlike that of LNCC. In fact, NCC
becomes determinate once the rank of the classes does
not change under all the different priors of the IDM;
but the smoothing effect of the prior decreases with d.
The same is known to happen with likelihood-based
methods, but convergence towards the precise model
is slower, as shown by the comparison in Figure 1.

It is interesting to compare LNCC and NCC when
they have, for the same sample size, very close de-
terminacy. This is this the case of NCC0.25 and
LNCC0.75 for d=25; of NCC0.05 and LNCC0.75 for
d=50; of NCC0.25 and LNCC0.95 for d=100. Note that
in general it is not possible to predict in advance which
choice of ϵ and α will allow to obtain similar determi-
nacy from LNCC and NCC. However, when NCC and
LNCC achieve the same determinacy, their perfor-
mances are very similar also on the remaining indica-
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Figure 4: LNCC versus NCC: scatter plots on different UCI binary data sets.

tors, as shown in Table 1. This suggests that, for the
same level of determinacy, NCC and LNCC become
indeterminate on roughly the same instances, despite
the different derivation of their algorithms. Note also
the large drop between Sgl-acc and NBC-I for both
classifiers, showing that both NCC and LNCC can be
seen as extending NBC towards increased reliability.

5.2 Binary Data Sets from UCI

We then considered 9 binary data sets (containing 2
classes) from the UCI repository; the number of in-
stances ranges from 57 to 3000 and the number of
features from 8 to 60. Since the data sets are binary,
set-accuracy and indeterminate output size can only
be respectively 100% and 2; we do not consider thus
these indicators. For each credal classifiers we report
instead Sgl-acc and NBC-I, namely the accuracy of
NBC when the credal classifier is respectively deter-
minate7 and indeterminate. If there is a large differ-
ence between these two indicators, the credal classi-
fier is doing a good job at isolating instances which
are difficult to classify for NBC. Moreover, we report
determinacy and D-acc to provide a general overview
of the classifiers’ behavior.

The results in Table 2 show that when LNCC and
7This follows from NBC returning the same class as the

credal classifier, when the latter is determinate (this is theo-
retically guaranteed for NCC and only empirically verified for
HNCC); Sgl-acc can be thus seen as measuring also the accu-
racy of NBC when the credal classifier is determinate.

Dataset Classifier Det Sgl-acc D-acc NBC-I

german NCC0.05 96.1 75.6 74.6 58.6
german LNCC0.95 95.7 75.7 74.6 57.5

haberman NCC0.05 95.1 73.3 72.1 45.6
haberman LNCC0.95 93.9 73.8 71.9 50.2
hepatitis NCC0.05 95.3 85.7 60.3 84.0
hepatitis LNCC0.75 95.4 85.5 61.1 83.9

Table 2: Results for LNCC and NCC on UCI data
sets, for choices of α and ϵ leading to close determi-
nacies. We report results only for 3 out of 9 analyzed
data sets, because the remaining data sets only show
very similar findings: namely that when LNCC and
NCC have close determinacy, their performance on all
indicators is substantially identical.

NCC have close determinacy, they also have very sim-
ilar performance on the remaining indicators, as in
the previous experiments. Also in this case, there is
in general a large drop between Sgl-acc and NBC-I,
showing that both credal classifiers are effective at
isolating instances that are hard to classify for NBC.

However, it is also interesting to see what happens
if we set a default choice for ϵ and α. We set ϵ to
0.05 for NCC, thus considering a minimal variation
over the NCC of [17], aimed at avoiding issues with
zero counts. As for LNCC, we adopted a trial and
error approach, from which α = 0.75 appeared as a
reasonable compromise between determinacy and reli-
ability of the classifier. On average, NCC has slightly
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higher determinacy (96.3% vs. 94.3%) and slightly
lower single-accuracy (84.2% vs. 85.5%) than LNCC.
Moreover, the area of ignorance (instances indetermi-
nately classified) of NCC is slightly more difficult to
classify for NBC than the area of ignorance of LNCC:
the average NBC-I is 53.1% vs. 57.6%. In fact, NCC
is slightly more determinate and thus more selective in
deciding when to become indeterminate. The average
discounted accuracy of the two classifiers is very close
(82.8% vs 82.7%). However, averaging indicators over
data sets is questionable; we thus also present in Fig-
ure 4 the scatter plots of such indicators. On each
data set there is little difference between the single-
accuracy of NCC and LNCC; the same holds also for
the discounted-accuracy. On the other hand, there
are sometimes considerable differences between NCC
and LNCC as for the determinacy, which tends to be
larger for NCC, and as for NBC-I, which tends to
be larger for LNCC. In general, when the difference
in determinacy between NCC and LNCC increases,
so does the difference in NBC-I between LNCC and
NCC.

6 Conclusions and Outlooks

We have presented an alternative, likelihood-based,
approach to the imprecise-probabilistic quantification
of a naive classifier. A numerical comparison with
the naive credal classifier (in its modified formulation
to cope with zero-count issues) shows that, despite
their deeply different derivations, the performance of
the two classifiers is very similar when they produce
more or less the same amount of indeterminate clas-
sifications. When the amount of indeterminacy be-
tween the two classifiers is considerably different, a
meaningful comparison is difficult: this would require
modelling the trade-off between accuracy and infor-
mativeness by means of one or more performance in-
dicators, which is currently one of the most important
open problems in credal classification.

Extensions of the new approach to more complex in-
dependence structures (e.g., tree-augmented naive),
incomplete data sets, and continuous features seem
to be worth of future investigations.
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Appendix

Proof of Theorem 1. Let g be the function assign-
ing to each t ∈ [a, b] the corresponding right-hand side
of (10). We prove the theorem by showing that for each
x ∈ [0, +∞] there is a unique t ∈ [a, b] such that g(t) = x.
When t ∈ (a, b), all the sums of three terms (of the form[
n + 1

2
± t

]
) in the expression of g(t) are positive. In this

case, each fraction [
n(c′, f̃j) + 1

2
+ t

][
n(c′) + 1

2
+ t

] (12)

is a continuous, increasing function of t, since it is differ-
entiable with derivative

n(c′)− n(c′, f̃j)[
n(c′) + 1

2
+ t

]2 ≥ 0.

Therefore, the numerator of g(t) is a continuous, strictly
increasing function of t ∈ (a, b), since it is the product of
m continuous, increasing functions and of the continuous,
strictly increasing function

[
n(c′) + 1

2
+ t

]
. Analogously,

we can prove that the denominator of g(t) is a continuous,
strictly decreasing function of t ∈ (a, b), and therefore g is
continuous and strictly increasing on (a, b).

In order to prove Theorem 1, it now suffices to show that

lim
t↓a

g(t) = g(a) = 0 and lim
t↑b

g(t) = g(b) = +∞. (13)

We prove the first expression: the second one can be
proved analogously. As t tends to a from above, the de-
nominator of g(t) tends to a positive constant, which is
reached when t = a. To study the limit of the numerator of
g(t), let j0 be such that n(c′, f̃j0) = minj=1,...,m n(c′, f̃j).
We can distinguish two cases: either n(c′, f̃j0) = n(c′), or
n(c′, f̃j0) < n(c′). In the first case, n(c′, f̃j) = n(c′) for
all j, and the numerator reduces to

[
n(c′) + 1

2
+ t

]
, since

the fractions (12) are all equal 1. Therefore, in this case,
the limit of the numerator of g(t) as t tends to a from
above is 0, because a = − 1

2
− n(c′). In the second case,

a = − 1
2
− n(c′, f̃j0), and thus the limit of the numerator

of g(t) as t tends to a from above is 0 as well, because the
fraction (12) with j = j0 tends to 0. Moreover, in both
cases, the numerator of g(t) is 0 when t = a, since 0

0
is

interpreted as 1. This proves the first expression of (13)
and hence the theorem.

Proof of Theorem 2. Let ld, π′, π′′, r be the functions
on Θ defined by

ld(θ) =
∏
c∈C

θn(c)
c

m∏
j=1

∏
fj∈Fj

θ
n(c,fj)

fj |c

 , r(θ) =
π′(θ)

π′′(θ)
,

π′(θ) = θc′

m∏
j=1

θf̃j |c′ , π′′(θ) = θc′′

m∏
j=1

θf̃j |c′′ ,

for all θ ∈ Θ. Then, up to normalisation, the considered
likelihood function lik corresponds to ld (π′ + π′′), since
ld(θ) is the probability of the observed data set D accord-
ing to the NBC specified by θ, while π′(θ) and π′′(θ) are
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the probabilities of the instance under consideration (ac-
cording to the NBC specified by θ), when its class is c′ and
c′′, respectively. Therefore, in particular, r(θ) corresponds
to the left-hand side of (10).

For each t ∈ [a, b], consider now the function

ld (π′)
1
2+t (π′′)

1
2−t = ld π′ rt− 1

2 = ld π′′ rt+ 1
2 . (14)

This function corresponds to the function ld with modi-
fied counts n (which are in general not integer anymore,
but still nonnegative), and can be easily maximised. Its
maximum is taken in θ̂(t), where θ̂(t) is the maximum
likelihood quantification of the NBC with respect to the
modified counts: that is,

θ̂(t)c′ =
n(c′) + 1

2
+ t

n(·) + 1
, θ̂(t)f̃j |c′ =

n(c′, f̃j) + 1
2

+ t

n(c′) + 1
2

+ t
,

θ̂(t)fj |c′ =
n(c′, fj)

n(c′) + 1
2

+ t
for all fj ̸= f̃j ,

θ̂(t)c′′ =
n(c′′) + 1

2
− t

n(·) + 1
, θ̂(t)f̃j |c′′ =

n(c′′, f̃j) + 1
2
− t

n(c′′) + 1
2
− t

,

θ̂(t)fj |c′′ =
n(c′′, fj)

n(c′′) + 1
2
− t

for all fj ̸= f̃j ,

θ̂(t)c =
n(c)

n(·) + 1
and θ̂(t)fj |c =

n(c, fj)

n(c)
for all fj ,

where c is any class different from c′, c′′. Therefore, in
particular, r(θ̂(t)) corresponds to the right-hand side of
(10): that is, θ̂(t) ∈ Θt.

Since θ̂(t) maximises the function (14) over all θ ∈ Θ,
it also maximises both functions ld π′ and ld π′′ over all
θ ∈ Θ such that r(θ) = r(θ̂(t)). That is, θ̂(t) maximises
both functions ld π′ and ld π′′ over all θ ∈ Θt, and therefore
it also maximises their sum ld (π′ + π′′) over all θ ∈ Θt.
Since this last function corresponds, up to normalisation,
to the considered likelihood function lik, we obtain the
result L(t) = lik(θ̂(t)).

In order to prove Theorem 2, it suffices to show that
lik(θ̂(·)) is proportional to l′ l′′ (p′ + p′′); that is, it suf-
fices to show that

ld(θ̂(t))
(
π′(θ̂(t)) + π′′(θ̂(t))

)
= γ l′(t) l′′(t)

(
p′(t) + p′′(t)

)
,

where the proportionality constant γ ∈ (0, +∞) may de-
pend on anything but t. Since

π′(θ̂(t)) + π′′(θ̂(t)) =
1

n(·) + 1

(
p′(t) + p′′(t)

)
,

it only remains to show that ld(θ̂(t)) is proportional to
l′(t) l′′(t). In the expression ld(θ̂(t)), we can drop all fac-
tors for classes c different from c′, c′′, because θ̂(t)c and
θ̂(t)fj |c do not depend on t when c is different from c′, c′′.
The desired result follows easily when one considers that

n(c) =
∑

fj∈Fj

n(c, fj)

for all c ∈ C and all j ∈ {1, . . . , m}.
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