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Abstract

In this paper, a nonadditive quantitative description
of uncertain knowledge about statistical models is ob-
tained by extending the likelihood function to sets and
allowing the use of prior information. This descrip-
tion, which has the distinctive feature of not being
calibrated, is called relative plausibility. It can be
updated when new information is obtained, and it
can be used for inference and decision making. As re-
gards inference, the well-founded theory of likelihood-
based statistical inference can be exploited, whereas
decisions can be based on the minimax plausibility-
weighted loss criterion. In the present paper, this de-
cision criterion is introduced and some of its proper-
ties are studied, both from the conditional and from
the repeated sampling point of view.
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1 Introduction

In statistics, the likelihood function is considered as
a measure, based on the data alone, of the relative
plausibility of various models for those data. It plays
a central role in many, if not most, modern procedures
in all approaches to statistics, and some of the most
appreciated inference methods are based directly on
the likelihood function. It is therefore tempting to
regard the likelihood function as a description of our
uncertain knowledge about the models: a description
that can be easily updated when new data are ob-
served, and that can be used for inference and de-
cision making. In this paper, a decision criterion
based directly on the likelihood function (the mini-
max plausibility-weighted loss criterion) is proposed.
It is defined in section 2, whereas in sections 3 and 4

some of its properties are studied: from the condi-
tional and from the repeated sampling point of view,
respectively.

2 Minimax Plausibility-Weighted Loss

2.1 Likelihood Function

Consider a set P of statistical models for an observed
event A. That is, P is a set of probability measures1

on a measurable space (Ω,A) such that A ∈ A. The
likelihood function on P based on the observation of
A is the real-valued function lik : P 7→ P (A).

If we observe the realization x of a continuous ran-
dom object X, we have P{X = x} = 0 for all P ∈ P.
But in reality, because of the finite precision of any
observation, we only know that X lies in a neighbor-
hood N of x (thus lik(P ) = P{X ∈ N}). If fP is a
density of X under the model P , it can be useful to
consider the approximation P{X ∈ N} ≈ δ fP (x). If
this holds for all P ∈ P, we obtain an approximate
likelihood function, which is proportional to the func-
tion P 7→ fP (x). This approximation can be very
valuable, but sometimes leads to little problems, such
as unbounded (approximate) likelihood functions. It
should be emphasized that these problems are due
to the above approximation and not to the likelihood
function itself, which in particular is always bounded
(since its values are probabilities).

The likelihood function lik is not calibrated, in the
sense that only relative values are statistically rele-
vant. The normed likelihood function lik (defined by
lik ∝ lik and supP∈P lik(P ) = 1) contains thus all
the statistical information of lik, but its value lik(P )
for a particular model P has no absolute meaning,
even if it has often a simple asymptotic distribution
(depending on the properties of P). In fact, the gen-
eral inference methods based directly on the likelihood

1Note that in statistics “model” is also used with a different
meaning, to indicate a whole family of probability measures.



function (like the maximum likelihood estimator or
the tests and confidence regions based on the likeli-
hood ratio statistic) consider only relative values and
may have to rely on large sample approximations.

In the literature on imprecise probabilities (for in-
stance in [14], [17], [9], [3], [6] and [20]), there are
many interesting proposals for obtaining possibilities,
plausibilities, or upper probabilities (to be used then
for inference or decision making) directly from the
likelihood function. But they all give an absolute
meaning to the values of lik or lik and are therefore
at variance with the statistical meaning of the like-
lihood function. Exceptions are the likelihood-based
inference method proposed in [19] and the axiomatic
approach to decision making developed in [7].

2.2 Relative Plausibility

To underline the fact that the likelihood function is
not calibrated, we introduce the concept of relative
plausibility. A completely maxitive measure on 2P

(see [16]) is a nonnegative, extended real-valued set
function µ such that µ(H) = supP∈H µ{P} for all
H ⊆ P, where (as in the rest of this paper) sup ∅ = 0.
A relative plausibility rp on P is an equivalence class
of completely maxitive measures on 2P with respect
to the equivalence relation µ ∼ ν ⇔ µ ∝ ν. We can
use rp to indicate one of its representatives only if the
result is independent of the choice of the represen-
tative: for example, we can evaluate rp{P}/rp{P ′},
but rp{P} has no absolute meaning. By definition, a
completely maxitive measure µ on 2P is uniquely de-
termined by the function µ↓ : P 7→ µ{P} on P, and
for each nonnegative, extended real-valued function f
on P there is a unique relative plausibility rp on P
such that rp↓ ∝ f (rp is said to be generated by f).

A relative plausibility rp on P is interpreted as a de-
scription of our uncertain knowledge about the mod-
els in P, and we are obviously interested in the one
generated by the likelihood function. This is the ex-
tension of the relative likelihood to the subsets of P
by means of the supremum. Such an extension can
be conceptually debatable (although for H0 ⊂ H1 the
ratio rp(H0)/rp(H1) is the criterion of the likelihood
ratio test of the hypothesis P ∈ H0 versus the hy-
pothesis P ∈ H1\H0), but it is at least very useful
from a notational standpoint.

If after having observed A our uncertain knowledge
about the models in P is described by the relative
plausibility rp, and we observe a new event B ∈ A,
we can easily update rp. The information obtained
by the observation of B is encoded in the (condi-
tional) likelihood function lik′ : P 7→ P (B|A), and
the updated relative plausibility is the one generated

by rp↓ lik′ (since P (A ∩B) = P (A)P (B|A)). In par-
ticular, if A and B are independent (under all models
P ∈ P), lik′ is simply the likelihood function based
on the observation of B (since P (B|A) = P (B)). It
is thus natural to allow an expression of our uncer-
tain knowledge about P prior to the observation of
events in A in terms of a prior relative plausibility
rppre, which is (informally) assumed to be based on
information obtained from events independent of A
(or equivalently, the models in P are assumed to be
conditional on these events). After observing the first
event A ∈ A, we can combine the respective likeli-
hood function lik with rppre, obtaining the relative
plausibility generated by rp↓pre lik. A (positive and
finite) constant relative plausibility rp describes com-
plete ignorance (all the models are equally plausible):
in fact, using it as a prior is equivalent to using no
prior (since rp↓ lik ∝ lik).

2.3 Decision Criterion

In a (statistical) decision situation, we have to choose
an element of a set D of possible decisions, on the
basis of a set P of considered models and of our un-
certain knowledge about these models. A nonnegative
loss function L on P ×D is assumed to summarize all
aspects of the possible decisions that should be consid-
ered in their evaluation:2 L(P, d) is the loss we would
incur, according to the model P , by making the deci-
sion d. The quantitative comparison of two decisions
is usually expressed in terms of the ratio of their losses
(at least when these do not depend on P). We shall
therefore interpret the loss as a relative quantity: the
loss functions cL and L are equivalent, for all c > 0
(that is, the unit in which the loss is expressed is of
no importance for the choice of a d ∈ D). It is not
necessary that infd∈D L(P, d) = 0 for all P ∈ P, but
it must be pointed out that if c 6= 0, the loss functions
L + c and L are not equivalent (since the ratio of the
losses of two decisions depends on c), even if the most
common decision criteria do not depend on c.

Consider the following situation: our uncertain knowl-
edge about the models is described by a relative plau-
sibility rp on P and we are faced with a decision prob-
lem described by a loss function L on P × D. If we
are completely ignorant about the considered mod-
els (that is, rp is constant), we can adopt the mini-
max criterion and choose a d ∈ D which minimizes
supP∈P L(P, d). A very intuitive way to extend this
approach to the case in which we have some knowledge
about the considered models (that is, rp is not con-
stant), is to use rp{P} as a weight for L(P, d). This

2Note that the definitions of D and L are very general: D
could for instance be a set of decision functions (in the sense of
Wald) and L the respective risk.



leads to the MPL (Minimax Plausibility-weighted
Loss) criterion: minimize

sup
P∈P

rp{P}L(P, d). (1)

A d ∈ D minimizing this quantity is called MPL deci-
sion; the set of MPL decisions does not depend either
on the unit in which the loss is expressed or on the
choice of the representative of rp. The MPL crite-
rion is obviously parametrization invariant (since it
is not based on a parametrization of P), and is not
concerned by the definition of rp for the subsets of P
(other than the singletons). If there are several MPL
decisions, their number should be reduced by using
other criteria, in particular the inadmissible decisions
should be discarded (d ∈ D is inadmissible3 if there is
a d′ ∈ D such that L(P, d) ≥ L(P, d′) for all P ∈ P,
and the inequality is strict for some P ∈ P). How-
ever, usually the MPL decision is unique, and in this
case it is certainly admissible.

2.4 Subadditive Integrals

The quantity (1) is proportional to the Shilkret in-
tegral of L(·, d) with respect to any representative µ
of rp (see [16]). Completely maxitive measures are
monotone and submodular, and for such measures
the commonly used integral is the one of Choquet
(see [5]). For completely maxitive measures on 2P and
nonnegative functions on P, the integrals of Shilkret
and of Choquet have many common properties; in
particular, they are subadditive:∫

(f + f ′) dµ ≤
∫

f dµ +
∫

f ′ dµ.

On the contrary, the following properties are not
shared by the two integrals. The Shilkret integral is
maxitive: ∫

sup
j∈J

fj dµ = sup
j∈J

∫
fj dµ,

whereas the Choquet integral is additive for comono-
tonic functions: in particular, for all c ∈ R we have∫

(f + c) dµ =
∫

f dµ + c µ(P). (2)

If we substitute the integral of Choquet for the one of
Shilkret in the MPL criterion, we obtain the following
criterion (let us call it MPL*): minimize the improper
Riemann integral∫ ∞

0

rp{P ∈ P : L(P, d) > x} dx.

3This definition generalizes the classical one, which is limited
to the case mentioned in footnote 2.

A d ∈ D minimizing this quantity is called MPL*
decision; the set of MPL* decisions does not depend
either on the choice of the representative of rp or on
the unit in which the loss is expressed. From the prop-
erty (2) of the Choquet integral, it follows that if rp
is finite, the MPL* criterion is invariant with respect
to translations of the loss function (that is, the set
of MPL* decisions for the problem described by the
loss function L + c does not depend on c). This in-
variance is very useful if the loss function is of the
form L = c−U , where U is a real-valued utility func-
tion on P×D (that is, U(P, d) represents the positive
or negative gain in utility that we would obtain, ac-
cording to the model P , by making the decision d;
see for instance [2]). In fact, since utility functions
are usually defined only up to positive affine transfor-
mations (that is, the utility functions aU + b and U
are equivalent, for all a > 0, b ∈ R), the above in-
variance is almost necessary for a loss function of the
form L = c − U . Unlike the Shilkret integral (which
is defined only for nonnegative functions), the Cho-
quet integral is defined also for real-valued functions,
and the property (2) still holds. If the completely
maxitive measure µ on 2P is finite and f is a real-
valued function on P, the Choquet integral satisfies∫

(−f) dµ = −
∫

f dµ, where the conjugate set func-
tion µ on 2P is defined by µ(H) = µ(P) − µ(P \ H),
for all H ⊆ P. Therefore, if the loss function is of
the form L = c− U and rp is finite, the MPL* crite-
rion can be expressed as follows: maximize the Cho-
quet integral

∫
U(·, d) drp. Clearly, the set of decisions

maximizing this integral is invariant with respect to
positive affine transformations of U , and it does not
depend on the choice of the representative of rp.

However, as already pointed out in subsection 2.3, in
statistics the loss functions L + c and L are generally
not considered equivalent (if c 6= 0), since the loss is
usually interpreted as a relative quantity. If we have
a utility function U on P×D, a loss function L whose
relative meaning is invariant with respect to positive
affine transformations of U can be defined as follows:

L(P, d) = sup
d′∈D

U(P, d′)− U(P, d).

The loss obtained in this way from a utility is often
called regret: L(P, d) is the loss in utility that we suf-
fer, according to the model P , for making the decision
d instead of the optimal one (see [11]).

In the remainder of this paper we shall consider only
the MPL criterion, but all the most important con-
sidered properties are satisfied also by the MPL* cri-
terion. Moreover, we have seen that the MPL* cri-
terion is invariant with respect to translations of the
loss function (if rp is finite): though not necessary for
a loss function with a relative meaning, this invari-



ance can be useful. But a basic feature of the MPL
criterion is lost by the MPL* criterion: its extreme
simplicity.

2.5 Pseudo Likelihood

Let P be a set of models and let lik be the likelihood
function on P based on the observation of some event.
Consider a mapping T : P → T , which assigns to each
model the respective value of the parameter of interest
(that is, T (P ) is the only aspect of P in which we are
interested). In particular, if T is bijective, T is called
a parametrization of P, and lik ◦T−1 is simply called
likelihood function on T . Obviously, for all purposes
of inference or decision making we can use the likeli-
hood function on T instead of the one on P. In gen-
eral, for any mapping T , a pseudo likelihood function
l̃ik on T is a function which, to some extent at least,
can be used as if T were a parametrization of P and l̃ik
were the likelihood function on T . The profile likeli-
hood function based on the mapping T is the function
likT on T defined by likT (t) = supP∈T−1{t} lik(P ).
The profile likelihood functions are the simplest and
most important kind of pseudo likelihood functions.

Consider the following situation: we have a relative
plausibility rp on P and we are faced with a decision
problem described by a loss function L which depends
on the model through the parameter of interest only.
That is, L(P, d) = L′[T (P ), d] for some nonnegative
function L′ on T ×D. In this case, the MPL criterion
can be expressed as follows: minimize

sup
P∈P

rp{P}L(P, d) = sup
t∈T

rp{T = t}L′(t, d),

where, as usual, {T = t} simply means T−1{t}. In
particular, if rp is generated by the likelihood func-
tion lik, the MPL criterion is simply the following:
minimize

sup
P∈P

lik(P ) L(P, d) = sup
t∈T

likT (t)L′(t, d).

That is, the MPL criterion automatically considers
the profile likelihood function of the parameter of in-
terest.

Although the use of the profile likelihood function
usually leads to reasonable results, better results can
sometimes be achieved by using other pseudo likeli-
hood functions. In the literature on likelihood-based
statistical inference, many alternative pseudo likeli-
hood functions (such as conditional, marginal, modi-
fied profile, partial, integrated or estimated likelihood
functions) have been proposed for different situations
(see for instance [13] and [10]). Obviously, if some
pseudo likelihood function l̃ik on T is expected to

give better results than likT , it should be used. This
leads to a pseudo MPL criterion: minimize

sup
t∈T

l̃ik(t) L′(t, d).

3 Conditional Point of View

Consider the following situation: we have a set P of
statistical models for an observed event A, we can
have some prior uncertain knowledge about the mod-
els in P, and we are faced with a decision problem
described by a loss function L on P × D. The whole
decision situation can be conditional on the observa-
tion A, in the following sense: the alternative events
which could have been observed (that is, a partition
of the event Ac) can be undefined, and for each one
of these alternative events the possible decisions and
the loss can be undefined (it can be impossible to
imagine which decision problem we would have faced
if we had observed an alternative event). To be ap-
plicable in such a situation, a decision criterion must
obviously avoid the consideration of the possible alter-
native events and the respective decision problems: a
criterion with this property is called conditional. Con-
ditional criteria are interesting also if the decision sit-
uation is not conditional on the observation A (that is,
we can define the possible alternative events and the
respective decision problems), because we may want
our decision to be based only on the event which was
actually observed. In this sense, conditional criteria
are based on a post-data evaluation of the possible
decisions, as opposed to a pre-data evaluation consid-
ering all the possible observations.

A decision criterion satisfies the strong likelihood
principle if it is conditional and it depends on the
observed event through the respective relative like-
lihood function only. It can be argued that a con-
ditional criterion which is at the same time general
and reasonable must satisfy this principle. Anyway, a
criterion which satisfies it must use in some way the
prior information about the models, the relative likeli-
hood function based on the observation, and the loss
function. The most elegant and clear way of doing
this is to compare the different decisions on the basis
of the loss function and of some quantitative descrip-
tion of the uncertain knowledge about the models, a
description that can be updated through the relative
(conditional) likelihood functions based on the obser-
vations.

3.1 Quantitative Descriptions of Uncertain
Knowledge about Statistical Models

The most important statistical theory based on a
quantitative description of the uncertain knowledge



about the models is obviously the Bayesian one. In
this theory, the uncertain knowledge is described by
a probability measure on P. This measure can be
updated through the relative (conditional) likelihood
functions based on the observations, and it can be
used straightforwardly for inference and decision mak-
ing. The Bayesian theory has many important prop-
erties, whereas its main problem is the need of a prior
probability measure on P.

Many generalizations of the Bayesian theory allowing
an imprecise prior have been proposed (see for in-
stance [2] and [1]). Most of them are formally equiv-
alent with the choice of some set of prior probabil-
ity measures on P (although the interpretations of
this set can be very different). These measures can
be individually updated through the relative (condi-
tional) likelihood functions based on the observations,
and the set of probability measures can be used in
some way (depending on the interpretation; see for
instance [12]) for inference and decision making. Al-
though these approaches allow some imprecision in
the prior, they have problems with the representa-
tion of ignorance. In particular, if we choose the
set of all probability measures on P as our imprecise
prior, the inferences will usually remain vacuous in-
dependently of the amount of statistical information
obtained from the observations. In every situation,
some compromise between the ignorance in the prior
and the power of the inferences must be reached (see
for example [19]).

In this paper, the direct use of the relative likelihood
(or its extension to sets: the relative plausibility) as
a description of the uncertain knowledge about the
models is proposed. This description can obviously
be updated through the relative (conditional) like-
lihood functions based on the observations, and it
can be used for inference and decision making. The
likelihood-based statistical inference is a well-founded
theory, whose conclusions are in general weaker than
those based on probabilistic assumptions (but which
do not need these assumptions), because the likeli-
hood function is not calibrated (see [10]). A calibra-
tion based on a repeated sampling interpretation is
usually possible, and can be very simple if a large
sample approximation applies (see [13]). As regards
decision making, in subsection 2.3 the MPL criterion
has been introduced. This criterion is based only on
the relative likelihood: in fact, no absolute meaning
is given to the quantity (1), which is used only in a
relative way, to compare the decisions d ∈ D.

3.2 Prior Uncertain Knowledge

If we are able to define a prior probability measure
π on P, and we are ready to give to this measure

the same status of the elements of P, we should
do it: what we obtain is a single probability mea-
sure Pπ on P × Ω. If (after having observed the
event A ∈ A) we are faced with a decision prob-
lem described by a loss function L on P × D, we
can define the new loss function L′ on {Pπ} × D by
L′(Pπ, d) = EPπ

[L(P, d)|P × A]. The MPL criterion
applied to the decision problem described by L′ corre-
sponds to the (conditional) Bayesian criterion: mini-
mize the posterior expected loss L′(Pπ, d).

If we are not able to precisely define the prior prob-
ability measure π, but we maintain that it belongs
to a particular set Γ of probability measures on P,
we obtain a new set of models P ′ = {Pπ : π ∈ Γ},
and we can define L′ on P ′ × D as above. If we
get no information from the observation of A (that
is, the respective likelihood function on P is con-
stant), the MPL criterion applied to the decision prob-
lem described by L′ corresponds to the (conditional)
Γ-minimax criterion: minimize supπ∈Γ L′(Pπ, d). But
if we get some information from the observation
of A, the MPL criterion applied to the decision
problem described by L′ is the following: mini-
mize supπ∈Γ Eπ[P (A)]L′(Pπ, d). That is, in this case
the MPL criterion uses the (second-order) likelihood
Eπ[P (A)] as a weight for the posterior expected loss
with respect to π. The (second-order) likelihood func-
tion lik′ : Pπ 7→ Pπ(P × A) = Eπ[P (A)] on P ′ allows
non-vacuous inferences, even if Γ is the set of all prob-
ability measures on P (that is, it allows us to get out
of the state of complete ignorance). Since the relative
plausibility on P ′ generated by the likelihood func-
tion lik′ is proportional to a (second-order) possibil-
ity measure, we can consider this description of our
uncertain knowledge about the models in P as a non-
calibrated possibilistic hierarchical model (see [4]).

If we are not ready to give to our prior uncertain
knowledge about the models in P a fully probabilistic
status, we can describe it by means of a prior relative
plausibility. This can be based on analogies with past
experience in a very natural way: in fact, what we
can observe about models are relative likelihoods, not
probabilities.

Relative plausibility seems to be more intuitive than
probability: for example, the intuitive idea that a dif-
fuse prior represents ignorance is wrong for proba-
bility, whereas it is correct for relative plausibility.
In fact, as noted at the end of subsection 2.2, a
constant relative plausibility describes complete ig-
norance. Partial ignorance can also be easily de-
scribed: consider for instance that we have a mapping
T : P → T and that the function f on T describes
the prior relative likelihood of the different values of
the parameter of interest T (P ). If we are otherwise



ignorant about P, we can use the prior relative plau-
sibility rp generated by f ◦ T , since the plausibility
ratio rp{P}/rp{P ′} is then simply f [T (P )]/f [T (P ′)]
(for all P, P ′ ∈ P). If we update rp through the likeli-
hood function lik (based on the observation of A), the
plausibility ratio rp{T = t}/rp{T = t′} = f(t)/f(t′)
is simply multiplied by the factor likT (t)/likT (t′) (for
all t, t′ ∈ T ), where likT is the profile likelihood func-
tion based on T (defined in subsection 2.5). This is
a very intuitive result: for instance, the case |T | = 2
can be described as follows. Let H0 and H1 be two
disjoint nonempty sets such that H0∪H1 = P. If our
prior uncertain knowledge about the models is lim-
ited to the plausibility ratio rp(H0)/rp(H1), after the
observation of A we have

rp′(H0)
rp′(H1)

=
supP∈H0

lik(P )
supP∈H1

lik(P )
rp(H0)
rp(H1)

,

where rp′ is the updated relative plausibility (that is,
the one generated by rp↓ lik). Compare this result
with the so-called Lindley’s paradox (see [15]).

It is important to note also that two prior relative
plausibilities rp and rp′ on P which are assumed to
be based on independent observations can be easily
combined: the resulting relative plausibility is the one
generated by rp↓ rp′↓.

3.3 Nonadditivity

The relative plausibility can be considered as an im-
precise probability, in the sense that it is a nonaddi-
tive quantitative description of uncertain knowledge.
Its principal distinctive feature is to be only a rela-
tive measure: in fact, a relative plausibility rp on P
is mathematically defined as an equivalence class of
proportional (completely maxitive) measures on 2P .
Since a completely maxitive measure µ on 2P such
that µ(P) ≤ 1 is a possibility measure on P, the
name “relative possibility” would better describe the
mathematical properties of rp, but “plausibility” bet-
ter describes the meaning attached to it.

The nonadditivity of rp implies in particular that it is
impossible to define an additive integral with respect
to (a representative of) rp, since

∫
IH dµ = µ(H) is

required. The nonadditivity of the integral has in-
convenient consequences: for example, consider two
decision problems described by the loss functions L1

on P × D1 and L2 on P × D2, respectively. We
can combine them in the single decision problem de-
scribed by the loss function L on P × (D1 × D2) de-
fined by L[P, (d1, d2)] = L1(P, d1) + L2(P, d2). Be-
cause of the nonadditivity of the integral, if d̃1 and
d̃2 are MPL decisions for the two problems consid-
ered separately, (d̃1, d̃2) needs not to be a MPL de-
cision for the compound problem. In fact, since the

Shilkret integral is maxitive, (d̃1, d̃2) is a MPL de-
cision for the compound problem if L is defined by
L[P, (d1, d2)] = max{L1(P, d1), L2(P, d2)}.

3.4 Robustness

The MPL decisions are invariant with respect to the
consideration of additional statistical models with suf-
ficiently small relative plausibilities. More precisely,
if P ′ ⊆ P, rp is a relative plausibility on P, L is a
loss function on P ×D, d is a MPL decision for the
problem described by the restriction of L to P ′×D
(with as relative plausibility on P ′ the restriction of
rp), and rp{P} ≤ c/L(P, d) for all P ∈ P \P ′ (where
c = supP ′∈P′ rp{P ′}L(P ′, d)), then d is also a MPL
decision for the problem described by L. Therefore,
instead of considering a set P ′ of models, we can ex-
tend it to a broader set P (or even to the whole set
of all probability measures on (Ω,A)) and use a prior
relative plausibility on P to describe the prior likeli-
hood of the different models: the models in P \P ′ can
influence the MPL decisions only if their (updated)
relative plausibilities are large enough.

Let IP be a set of imprecise models, in the sense that
every IP ∈ IP is a set of probability measures on
(Ω,A). We can consider this situation by defining
P = ∪IP and T : P → IP such that T−1{IP} = IP
(some technicalities are needed if the sets IP over-
lap). A prior relative plausibility on P based on a
prior relative likelihood function on IP can be de-
fined as described in subsection 3.2, and if lik is the
likelihood function on P based on the observation of
the event A ∈ A, then likT (IP ) = supP∈IP P (A).
That is, using imprecise models simply means con-
sidering the pseudo likelihood function on IP defined
by the upper probabilities. In particular, if P is a
set of models, replacing every P ∈ P by the corre-
sponding ε-contamination class (that is, the set of all
models of the form (1− ε) P + ε P ′, for all probability
measures P ′ on (Ω,A)) simply means considering the
pseudo likelihood function (1−ε) lik+ε on P instead
of the likelihood function lik (this can be interpreted
as a discounting of the information encoded in lik;
see [14]).

4 Repeated Sampling Point of View

Consider the following situation: we have a set P of
statistical models for a random object X : Ω → X , we
can have some prior uncertain knowledge about the
models in P, and for each possible realization x of X
we have a decision problem described by a loss func-
tion Lx on P×Dx. Since this decision situation is not
conditional on the observation of a particular event
{X = x}, we can consider a pre-data evaluation of



the decisions, in the following sense. A decision func-
tion δ on X assigns to each possible realization x of X
a decision δ(x) ∈ Dx for the problem described by Lx.
Under each model P ∈ P, the performance of δ is de-
scribed by the function x 7→ Lx[P, δ(x)] on X ; if this
function is measurable, the (pre-data) evaluation of
δ can be based on the random variable LX [P, δ(X)].
If the different losses Lx are expressed in the same
unit, we can consider LX [P, δ(X)] as the random loss
of δ, and in this case the simplest way to compare
different decision functions is to reduce the random
loss to a single (representative) value. The expected
value of the loss (called risk) is generally used, but
sometimes other aspects of the random loss (such as
quantiles) are considered. Anyway, for each model
P ∈ P and each decision function δ ∈ D (the set of
the possible decision functions), we have a represen-
tative value L(P, δ) of the random loss. Considered
in this way, the choice of a decision function corre-
sponds to the (pre-data) decision problem described
by the loss function L on P × D. If L(P, δ) is the
risk of δ under the model P and we have no prior
information about the models in P, the MPL crite-
rion applied to this problem corresponds to the usual
minimax risk criterion; but if we have a prior relative
plausibility rp on P, the MPL criterion uses rp{P} as
a weight for the risk with respect to P .

Since the MPL decision criterion is conditional, we
can also apply it after the observation of the realiza-
tion x of X, to the problem described by Lx (using
the updated relative plausibility). A conditional MPL
decision function δ is a function on X such that (for
all x ∈ X ) δ(x) is a MPL decision for the conditional
problem described by Lx. In general, δ is not a MPL
decision for the problem described by L: this implies
that the choice between pre-data and post-data evalu-
ation is important.4 Since the pre-data decision prob-
lem is usually much more difficult than the conditional
problems, it is interesting to study the properties of
the conditional MPL decision functions from the re-
peated sampling point of view, in particular if Lx and
Dx do not depend on x. In this case, the observation
of the realizations of one or more random objects can
be interpreted as a way to acquire information use-
ful for making a better choice in a particular decision
problem.

4.1 Equivariance

Consider the following situation: we have a set P of
statistical models for a random object X : Ω → X ,
and we are faced with a decision problem described

4The property of equivalence between pre-data and post-
data evaluation is satisfied by the Bayesian expected loss crite-
rion (but only if L is defined as the risk); see [1].

by a loss function L on P ×D. Let δ be a conditional
MPL decision function on X (obtained without us-
ing a prior relative plausibility). If the decision prob-
lem is invariant (under a group of transformations of
X ), then δ is equivariant (see for instance [2], where
this property is called invariance). More precisely, δ
is equivariant if it is unique; if it is not unique, the
equivariance property still holds, but for the sets of
MPL decisions. If we use a prior relative plausibil-
ity rp on P, these results hold only if rp satisfies an
invariance property. The proofs are straightforward,
but the introduction of the elements of an invariant
problem would need too much space.

When the decision problem is invariant, the equivari-
ance is generally considered as a very important prop-
erty for a decision function, assuring that this presents
symmetries corresponding to those of the problem.
The equivariance is usually a restriction imposed on
the set of the possible decision functions, after consid-
eration of the symmetries of the problem. The condi-
tional MPL decision criterion guarantees the equivari-
ance of the corresponding decision function, without
need of considering the symmetries (and only if these
are not invalidated by asymmetric prior information).

4.2 Asymptotic Optimality

If we have a decision problem described by a loss func-
tion L on P ×D, under the model P an optimal de-
cision d ∈ D is obviously one that minimizes the loss
L(P, d). Consider two different models P, P ′ ∈ P; if
we observe a sequence of realizations of random ob-
jects, we can expect that, according to the model P ,
the plausibility ratio of P and P ′ tends to infinity as
the number of observations tends to infinity. Since
this is valid for all P ′ different from P , and since the
relative plausibility is used in the MPL criterion as
a weight for the loss, we can expect that, under the
model P , the loss L(P, d) tends to have a decisive im-
portance in the choice of d. Thus we can expect that,
according to any model in P, the conditional MPL
decisions tend to be optimal as the number of obser-
vations tends to infinity: this property can be called
asymptotic optimality. In fact, this property can be
easily shown for the case of a finite set of models P
(and even in the strong sense of almost sure conver-
gence), whereas for the case of an infinite set of models
some regularity conditions on the models and on the
loss function are needed (and stronger conditions are
needed for assuring almost sure convergence).

The asymptotic optimality can be considered as a
minimal requirement for a decision criterion based on
statistical information. It is important to note that
the asymptotic optimality is not affected by the use
of a prior relative plausibility, as long as this satisfies



some regularity conditions (such as being positive).

4.3 Pre-Data Evaluation

The MPL criterion satisfies the strong likelihood prin-
ciple. A decision criterion satisfying this principle
considers the observed events through the respective
relative likelihood functions only. Since the same like-
lihood function can be obtained from very different
problems, the decision function obtained by the post-
data application of a criterion satisfying the strong
likelihood principle can have arbitrarily bad pre-data
properties in some particular problems, if the crite-
rion does not use prior information. In practice, the
same is true even if it uses prior information, as long
as this has not been chosen precisely to assure good
pre-data properties. Besides the use of a prior rel-
ative plausibility, the conditional MPL criterion has
another possibility for obtaining better pre-data prop-
erties for the corresponding decision functions: the
use of pseudo likelihood functions. In fact, the pseudo
MPL criterion does not in general satisfy the strong
likelihood principle.

On the other side, a decision criterion satisfying the
strong likelihood principle has the fundamental prop-
erty of being independent of the choice of a sufficient
statistic for the data. Moreover, since such a crite-
rion is conditional, it can be applied post-data, avoid-
ing the important problems related to the ancillary
statistics (see for instance [8]), and drastically reduc-
ing the complexity of the decision problem. In fact,
a conditional MPL decision can be found (or at least
numerically approximated) even in difficult problems,
in which it is practically impossible to find a decision
function satisfying some kind of pre-data optimality.

4.4 Examples

As examples of conditional MPL decision functions,
we can consider the ones obtained in some of the sim-
plest and most important estimation problems: so we
can compare the risk of these decision functions with
the risk of the usual estimators. These comparisons
make sense only if we start with complete ignorance
and we consider the usual loss functions (in general,
the MPL decisions depend on the choice of the loss
function).

4.4.1 Binomial

The estimation of the probability parameter p of the
binomial distribution B(n, p) is certainly one of the
most important estimation problems for discrete dis-
tributions. For a fixed n, let P = {Pp : p ∈ [0, 1]},
with X ∼Pp B(n, p). We can consider, as usual,
the squared error loss L(Pp, d) = (d − p)2, where

n = 1 n = 10

n = 100 n = 1000

Figure 1: Risk functions of δMPL, δMR and δML.

d ∈ D = [0, 1]. For n = 1, the conditional MPL
decision function δMPL corresponds to the minimax
risk decision function δMR (that is, δMPL(0) = 1

4 and
δMPL(1) = 3

4 ). But for n > 1, δMPL leaves δMR and,
as n increases, it tends rapidly toward the maximum
likelihood decision function δML (which is the usual
estimator: δML(x) = x

n ). This is a good behavior,
since usually δMR is preferred (on the basis of the
squared error risk) for small values of n, whereas δML

is preferred for large (and even for moderate) values
of n.

The four graphs of Figure 1 show the risk functions
p 7→ EPp

[(δ(X) − p)2] of δ = δMPL (the solid lines),
δ = δMR (the constant dashed lines) and δ = δML

(the parabolic dashed lines), for different values of
n (in each graph, the abscissa axis is [0, 1] and the
ordinate axis is [0, 1

4 n ]). For n = 1, the risk function
of δMPL corresponds to the one of δMR, whereas for
n = 1000, it (nearly) corresponds to the one of δML.

4.4.2 Normal

The estimation of the parameters µ and σ2 of the
normal distribution N (µ, σ2) on the basis of a sam-
ple x = (x1, . . . , xn) is certainly one of the most
important estimation problems for continuous distri-
butions. Let P = {Pµ,σ : µ ∈ R, σ > 0}, with

X1, . . . , Xn
iid∼Pµ,σ

N (µ, σ2). We can consider, as
usual, the squared error losses, and in particular (since
P is a location-scale family of models) their invariant
versions: L(Pµ,σ, d) = (d−µ)2

σ2 (where d ∈ D = R) for



n 2 5 10 20 50
δMPL 0.996 0.995 0.996 0.998 0.999
δMV U 0.333 0.667 0.818 0.905 0.961
δML 0.889 0.926 0.957 0.977 0.990

Table 1: Relative efficiencies with respect to δMRE .

the estimation of µ, and L(Pµ,σ, d) = (d−σ2)2

σ4 (where
d ∈ D = (0,∞)) for the estimation of σ2. Moreover,
as usual, we can base our conclusions on the approxi-
mate likelihood function obtained from the density of
X = (X1, . . . , Xn).

The conditional MPL decision function for the es-
timation of µ corresponds to the usual (and undis-
puted) estimator, which assigns to each x the arith-
metic mean x = x1+···+xn

n . For n ≥ 2, the condi-
tional MPL decision function for the estimation of σ2

is δMPL = s2

n+cn
, where cn ≈ 1.3 (cn varies slightly

with n) and s2 is the function which assigns to each
x the sum of squares

∑n
j=1(xj − x)2. The usual es-

timator of σ2 is the (uniform) minimum variance un-
biased decision function δMV U = s2

n−1 , whereas the

maximum likelihood decision function is δML = s2

n .
Since δMPL, δMV U and δML are location-scale equiv-
ariant, we can compare their constant risks with the
one of the minimum risk (location-scale) equivariant
decision function δMRE = s2

n+1 . The ratio of the con-
stant risks of δMRE and δ is sometimes called the rela-
tive efficiency of δ with respect to δMRE , and is given
in Table 1 for δ = δMPL, δ = δMV U and δ = δML, for
different values of n. We see that δMPL is almost op-
timal (among the equivariant decision functions) even
for small values of n; but as n increases, the optimality
is approached also by δMV U and δML.

4.4.3 Asymmetric Error

In all the estimation problems considered above, we
have used as loss L(P, d) the (weighted) squared error:
this error is symmetric, in the sense that the function
L(P, ·) is symmetric about the estimated parameter,
for all P ∈ P. In an estimation problem with symmet-
ric error, the conditional MPL decision function δMPL

usually tends rapidly toward the maximum likelihood
decision function δML, as the number of observations
increases. This is good, since δML is often asymptoti-
cally efficient, and δMPL usually shares this property.
But if the error is asymmetric, the asymptotic effi-
ciency can be a drawback for a decision function, and
in this case δMPL often tends toward δML too slowly
to be asymptotically efficient. Estimation problems
with asymmetric error are not very common in the
statistical literature, but we can consider for instance

the two examples studied in [18]: these can be re-
garded as the first published examples of application
of the general theory of statistical decisions.

In the first example, we consider the estimation of
the mean µ of the normal distribution N (µ, 1) with
variance 1, on the basis of a sample x = (x1, . . . , xn).
Let P = {Pµ : µ ∈ R}, with X1, . . . , Xn

iid∼Pµ
N (µ, 1).

As loss we use the asymmetric error

L(Pµ, d) =
{

2 (d− µ) if d ≥ µ
µ− d if d ≤ µ

(where d ∈ D = R), and, as usual, we base our conclu-
sions on the approximate likelihood function obtained
from the density of X = (X1, . . . , Xn). The consid-
ered asymmetric error favors the underestimation of
µ, and in fact δMPL(x) = x − c√

n
, with c ≈ 0.345.

Since the maximum likelihood estimator does not con-
sider the error, we have δML(x) = x; whereas the min-
imax risk decision function δMR has the same form of
δMPL, with c ≈ 0.431. Since the estimation problem
is location invariant, and δMPL, δML and δMR are
location equivariant, we can compare their constant
risks. The relative efficiency of δMPL with respect to
δMR is 0.996, whereas the one of δML is 0.911. These
relative efficiencies are independent of n, and in fact
δMPL and δMR (unlike δML) are not asymptotic effi-
cient estimators of µ.

In the second example, we consider the estimation of
the mean µ of the uniform distribution U(µ− 1

2 , µ+ 1
2 ),

on the basis of a sample (x1, . . . , xn). We use the
same asymmetric error as in the previous example,
and we get similar results, with the difference that
this time δMPL = δMR (whereas δML is not uniquely
defined). Since the estimation problem is location in-
variant, δMPL is the minimum risk (location) equiv-
ariant decision function.

5 Conclusion

In the present paper, the minimax plausibility-weight-
ed loss criterion has been introduced: this allows de-
cisions to be based directly on the likelihood function.
Therefore, by extending the likelihood function to sets
and allowing the use of prior information, we obtain a
full-fledged quantitative description of the uncertain
knowledge about the models: the relative plausibil-
ity. This can be considered as a non-calibrated impre-
cise probability (or more precisely, as a non-calibrated
possibility measure) on the considered set of mod-
els. The conclusions based on the relative plausibility
are in general weaker than those based on a proba-
bilistic description of the uncertain knowledge about
the models; but the relative plausibility is based on
weaker assumptions, it is simpler and more intuitive.



The minimax plausibility-weighted loss criterion is
a simple, intuitive and completely general decision
criterion. It has many important properties, such
as parametrization invariance, independence of the
choice of a sufficient statistic for the data, condition-
ality, possibility of using prior information, but also
of starting with complete ignorance, some kind of ro-
bustness with respect to the consideration of addi-
tional models, possibility of using pseudo likelihood
functions and of considering imprecise models. The
conditional application of the criterion allows deci-
sions even in difficult problems, and the obtained deci-
sion functions are equivariant (if the problem is invari-
ant) and asymptotic optimal (if some regularity con-
ditions are satisfied), but they can have bad pre-data
properties in particular problems (as any decision
function obtained by the conditional application of
a criterion satisfying the strong likelihood principle).
The consideration of many examples seems to suggest
that the minimax plausibility-weighted loss criterion
leads in general to reasonable decisions. Some of these
examples (for instance the estimation of variance com-
ponents in mixed effects models), as well as the exact
statements and proofs of the properties considered in
this paper, will be published in my PhD thesis, which
will be submitted soon.
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