
Combining Belief Functions Issued from
Dependent Sources

MARCO E.G.V. CATTANEO
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Abstract
Dempster’s rule for combining two belief functions assumes the indepen-

dence of the sources of information. If this assumption is questionable, I

suggest to use the least specific combination minimizing the conflict among

the ones allowed by a simple generalization of Dempster’s rule. This in-

creases the monotonicity of the reasoning and helps us to manage situations

of dependence. Some properties of this combination rule and its usefulness

in a generalization of Bayes’ theorem are then considered.
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1 Introduction
In the theory of belief functions, Dempster’s rule allows us to pool the information

issued from several sources, if we assume that these are independent. In his orig-

inal work [2], Dempster based the independence concept on the usual statistical

one and underlined the vagueness of its real world meaning. Shafer reinterpreted

Dempster’s work and in his monograph [8] defined a belief function without as-

suming an underlying probability space, making so the independence assumption

even more problematic.

In probability theory, the independence concept refers to classes of events or

to random variables, with respect to a single probability distribution (this kind of

independence for belief functions is studied for instance in Ben Yaghlane, Smets

and Mellouli [1]). On the contrary, the concept considered here refers to several

sources of information issuing several belief functions over the same frame of

discernment. The assumption of the independence of the sources can be justified

only by analogies with other situations in which this assumption proved to be

sensible (cf. Smets [10]).

Following Dubois and Prade [3], I consider a generalization of Dempster’s

rule which allows the sources of information to be dependent. This general rule
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just assigns to a pair of belief functions a set of possible combinations, compelling

us to make a choice. If the independence of the sources of information is doubtful

(that is, we cannot adequately justify its assumption), I suggest to choose the least

specific combination minimizing the conflict. This increases the monotonicity of

the reasoning (in particular, complete monotonicity is assured if it does not en-

tail incoherence) and helps us to manage situations of dependence (in particular,

idempotency is assured).

2 Setting and Notation
It is assumed that the reader has a basic knowledge of the Dempster-Shafer the-

ory and of classical propositional logic (refer for instance to Shafer [8] and to

Epstein [4], respectively).

Let U be a finite set of propositional variables, which represents the topic

considered. LU denotes the language of propositional logic built over the alphabet

U ∪{�,¬,∨,∧,→}, where � is the tautology. VU denotes the set of (classical)

valuations of LU , i.e. the consistent assignments v : LU −→ {t, f} of truth values

to the formulas of LU (thus |VU | = 2|U|). The mapping

TU : LU −→ 2VU

ϕ �−→ {v ∈VU : v(ϕ) = t}

assigns to each formula of LU the set of its models, i.e. the valuations for which

the formula is true.1

Definition 1 A basic belief assignment (bba) is a function

m : 2VU −→ [0,1] such that m( /0) = 0 and ∑
A⊆VU

m(A) = 1.2

MU is the set of bbas on 2VU .
The belief and the plausibility about U with bba m are the functions

bel : LU −→ [0,1]

ϕ �−→ ∑
A⊆TU (ϕ)

m(A) ,

pl : LU −→ [0,1]

ϕ �−→ ∑
A∩TU (ϕ)�= /0

m(A) .

1TU is not injective (LU is redundant) but it is surjective (LU is sufficient).
2The beliefs are normalized, since the “open-world assumption” (see for instance Smets [9]) does

not make sense in the setting of classical propositional logic: a formula and its negation cannot both

be false.
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Consider two finite sets of propositional variables U ⊆ V . If bel is a belief

about V , the belief bel �U about U is the restriction of bel to LU . If bel is a belief

about U, the belief bel �V about V is the vacuous extension of bel to LV , i.e. the

minimal belief about V whose restriction to LU is bel (where minimal means that

if bel′ is a belief about V satisfying bel ′ �U= bel, then bel �V ≤ bel′).3

Definition 2 A joint belief assignment (jba) with marginal bbas m1,m2 ∈ MU is
a function

m : 2VU ×2VU −→ [0,1] such that

∑
B⊆VU

m(A,B) = m1 (A) for all A ⊆VU and

∑
A⊆VU

m(A,B) = m2 (B) for all B ⊆VU .

M m1,m2
U is the set of jbas with marginal bbas m1,m2 ∈ MU .
The conflict of a jba m is the quantity

c(m) = ∑
A∩B= /0

m(A,B) .

For any m1,m2 ∈ MU , the function mD on 2VU ×2VU defined by

mD (A,B) = m1 (A)m2 (B)

is a jba with marginal bbas m1 and m2 (it is the jba which corresponds to the

independence assumption). Thus M m1,m2
U cannot be empty.

In the following, bel1 and bel2 will denote two beliefs about U with bbas m1
and m2, respectively (and pl1 and pl2 will denote the respective plausibilities). If

m ∈ M m1,m2
U with c(m) < 1, the function m on 2VU defined by m( /0) = 0 and

m(A) =
1

1− c(m) ∑
B∩C=A

m(B,C) if A �= /0

is a bba. The belief about U with bba m is called combination of bel1 and bel2 with

respect to m, and is denoted by bel1 ⊗m bel2. The rule ⊗ generalizes Dempster’s

one ⊕, since the latter is the combination with respect to the particular jba mD , or

symbolically ⊕ = ⊗mD .

3 Monotonicity and Conflict
A reasoning process is called monotonic if the acquisition of new information

does not compel us to give up some of our beliefs; otherwise it is called non-

monotonic. In the Dempster-Shafer theory, the reasoning process consists in the

3If m is the bba associated with bel, then the bba associated with bel �V is the function m′ on 2
VV

defined by m′ (TV (ϕ)) = m(TU (ϕ)) for all ϕ ∈ LU , and m′ (A) = 0 if A /∈ TV (LU).
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combination of beliefs. That is, the reasoning would be monotonic only if

bel1 ⊗m bel2 ≥ max(bel1,bel2) ,

which does not always hold (cf. Yager [12]). Proposition 1 gives the best possible

lower bound for bel1⊗m bel2 (ϕ) based only on the knowledge of bel1 (ϕ), bel2 (ϕ)
and c(m).

Proposition 1 If m ∈ M m1,m2
U with c(m) < 1, and ϕ ∈ LU , then

bel1 ⊗m bel2 (ϕ) ≥ max

(
bel1 (ϕ)− c(m)

1− c(m)
,

bel2 (ϕ)− c(m)

1− c(m)
,0

)
.

Proof. (1− c(m))bel1 ⊗m bel2 (ϕ) = ∑
/0 �=(A∩B)⊆TU (ϕ)

m(A,B) ≥

≥ ∑
A⊆TU(ϕ)

∑
B⊆VU

m(A,B)− ∑
A∩B= /0

m(A,B) = bel1 (ϕ)− c(m) .

Similarly, (1− c(m))bel1 ⊗m bel2 (ϕ) ≥ bel2 (ϕ)− c(m). �

From Proposition 1 it follows that if m has no conflict (i.e. c(m) = 0), then

we have monotonicity. But if m has some conflict (i.e. c(m) > 0), then the mono-

tonicity is assured only for the formulas ϕ such that max(bel1 (ϕ) ,bel2 (ϕ)) = 1.

In general we can affirm that the more m has conflict, the more we have nonmono-

tonicity.

The monotonicity is admissible only if there is a belief bel about U with

bel ≥ max(bel1,bel2). If there is a formula ϕ with bel1 (ϕ) > pl2 (ϕ),4 then the

monotonicity is not admissible, since bel ≥ max(bel1,bel2) implies that

bel (�) ≥ bel (ϕ)+ bel (¬ϕ) ≥ bel1 (ϕ)+ bel2 (¬ϕ) > 1.

Proposition 2 assures that if the monotonicity is admissible, then it is feasible (that

is, there is a jba without conflict).

Proposition 2
min

m∈M m1,m2
U

c(m) = max
ϕ∈LU

(bel1 (ϕ)− pl2 (ϕ)) .

Proof. Let m be a jba minimizing the conflict (such a jba certainly exists since

M m1,m2
U ⊂ R

22|VU |
is compact and not empty).

If A1,A2,B1,B2 ⊆VU with A1 ∩B1 = /0, A1 ∩B2 �= /0, A1 �= A2, m(A1,B1) > 0

and m(A2,B2) > 0, then A2 ∩B1 = /0 and A2 ∩B2 �= /0, and without loss of gener-

ality we may assume that m(A2,B1) > 0.

4Notice that bel2 (ψ)− pl1 (ψ) = bel1 (ϕ)− pl2 (ϕ) with ϕ = ¬ψ.
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To prove this, consider the function m′ on 2VU ×2VU defined by

m′ (A,B) =

⎧⎨
⎩

m(A,B)− ε if (A,B) ∈ {(A1,B1) ,(A2,B2)} ,

m(A,B)+ ε if (A,B) ∈ {(A1,B2) ,(A2,B1)} ,

m(A,B) otherwise,

for an ε such that 0 < ε < min(m(A1,B1) ,m(A2,B2)). It is easily verified that

m′ ∈M m1,m2
U and c(m′)≤ c(m), with equality only if A2∩B1 = /0 and A2∩B2 �= /0.

Let A = {A ⊆VU : ∃ B ⊆VU A∩B = /0,m(A,B) > 0} and A =
[

A∈A
A.

If B∩A �= /0, then m2 (B) = ∑
A∈A ,A∩B �= /0

m(A,B).

This can be proven as follows. Since B∩ A �= /0, there is an A1 ∈ A with

A1∩B �= /0. Since A1 ∈ A , there is a B1 ⊆VU with A1∩B1 = /0 and m(A1,B1) > 0.

If A2 ⊆VU with A1 �= A2 and m(A2,B) > 0, then we are in the situation considered

above (with B2 = B). Therefore A2 ∈ A (since A2 ∩B1 = /0 and m (A2,B1) > 0)

and A2 ∩B �= /0. Thus m(A,B) > 0 implies A ∈ A and A∩B �= /0.

Let ϕ ∈ LU with TU (ϕ) = A . Then

c(m) = ∑
A∈A ,A∩B= /0

m(A,B) = ∑
A∈A

m1 (A)− ∑
A∈A ,A∩B �= /0

m(A,B) =

= ∑
A∈A

m1 (A)− ∑
B∩A �= /0

m2 (B) ≤ bel1 (ϕ)− pl2 (ϕ) .

On the other hand, for any ψ ∈ LU (let C = TU (ψ) and C = VU\C),

c(m) ≥ ∑
A⊆C,B⊆C

m(A,B) = ∑
A⊆C

m1 (A)− ∑
A⊆C,B�C

m(A,B) ≥

≥ ∑
A⊆C

m1 (A)− ∑
B�C

m2 (B) = bel1 (ψ)− pl2 (ψ)

�

Let cm1,m2
min denote the value of min

m∈M m1 ,m2
U

c(m), and let bel1 and bel2 be called

compatible if bel1 ≤ pl2. Proposition 2 enables us to determine cm1,m2
min and to prove

Corollary 1.

Corollary 1 The following assertions are equivalent.

• The monotonicity of the combination of bel1 and bel2 is admissible.

• bel1 and bel2 are compatible.

• cm1,m2
min =0.
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4 The Choice of a Combination Rule
The only case in which the marginal bbas uniquely determine the jba is the con-

ditioning of a belief. The conditioning on ϕ ∈ LU of a belief bel about U is the

result of its combination with belϕ
U , where belϕ

U denotes the minimal belief about

U assigning the value 1 to the formula ϕ.5 It is easily verified that if one of the

two beliefs which have to be combined has the form belϕ
U , then the jba is unique

(i.e. M m1,m2
U = {mD}). Thus in the case of conditioning the general rule ⊗ reduces

itself to Dempster’s one.

Generally, in order to combine two beliefs bel1 and bel2 about U, we must

choose a jba m ∈ M m1,m2
U . Sometimes we can analyse in detail the situation and

base our choice on specific assumptions about the nature of the dependence of the

sources of information, but usually we can at most assume their independence.

Thus there is little loss of generality in considering only the two usual cases:

the one in which the independence is assumed, and the one in which nothing

is assumed about the sources. In both cases we need a combination rule; that

is, we need an operator � assigning to every pair of bbas m1,m2 ∈ MU a jba

m1 �m2 ∈M m1,m2
U , for any finite set of propositional variables U. Such an operator

can be sensible only if it satisfies the following basic requirements (the first two

make the combination rule independent of the particular logical formalization,

whereas the third one is a technical necessity).

• The influence of U on � must be limited to the cardinality of VU . That is, if

V is a set of propositional variables and f : VV −→VU is a bijection, then

(m1 ◦ f )� (m2 ◦ f )(A,B) = m1 � m2 ( f (A) , f (B)) for all A,B ⊆VV .

• The operator � must be “equivariant” with respect to the vacuous exten-

sions. That is, if V is a finite set of propositional variables with U ⊆ V and

m′
1,m

′
2 are the bbas associated with bel1 �V and bel2 �V , respectively, then

m′
1 � m′

2 (TV (ϕ) ,TV (ψ)) = m1 � m2 (TU (ϕ) ,TU (ψ)) for all ϕ,ψ ∈ LU .

• The combination with respect to m1 �m2 must be defined as often as possi-

ble. That is, if cm1,m2
min < 1, then c(m1 � m2) < 1.

It is easily verified that the operator which corresponds to Dempster’s rule

(m1 �m2 = mD) satisfies these basic requirements. Thus if in the considered situa-

tion the assumption of the independence of the sources of information is sensible,

we should employ Dempster’s rule. But if the independence is doubtful, employ-

ing this rule can be hazardous, since the conflict is in general pretty high (even if

5The bba associated with belϕ
U is the function m on 2

VU defined by m(TU (ϕ)) = 1 and m(A) = 0

if A �= TU (ϕ). In particular, bel�U is the vacuous belief about U.
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the combined beliefs are exactly the same) and this means unnecessary nonmono-

tonicity.

In order to reduce the unnecessary nonmonotonicity, I suggest to choose the

jba which minimizes the conflict (with this choice the monotonicity is assured if it

is admissible). If this is not unique, it seems natural to me to choose the least spe-

cific one. This is the jba whose respective combination of beliefs maximizes the

well established measure of nonspecificity (see for instance Klir and Wierman [7])

among the combinations with respect to the jbas with minimal conflict.

Definition 3 If bel is a belief about U with bba m, the measure of nonspecificity
of bel is the quantity

N(bel) = ∑
A �= /0

m(A) log2 |A| .

Thus if cm1,m2
min < 1, I suggest to choose as m1 � m2 a jba m maximizing

N
(
bel1 ⊗m bel2

)
among the m ∈ M m1,m2

U with c(m) = cm1,m2
min (if cm1,m2

min = 1, the

choice of a jba is useless, since anyway we cannot combine bel1 and bel2). From

Proposition 3 follows that the task of finding such a m is a problem of linear

programming.6

Proposition 3 If m1,m2 ∈ MU , cm1,m2
min < 1 and f : N −→ R with f (0) < −|U|

and f (n) = log2 n for all n > 0, then

arg max
m∈M m1,m2

U
c(m)=c

m1,m2
min

N
(
bel1 ⊗m bel2

)
= arg max

m∈M m1,m2
U

∑
A,B⊆VU

m(A,B) f (|A∩B|) .

Proof. Let F(m) = ∑
A,B⊆VU

m(A,B) f (|A∩B|). If c(m) = cm1,m2
min , then

F(m) = cm1,m2
min f (0)+

(
1− cm1,m2

min

)
N

(
bel1 ⊗m bel2

)
.

Therefore it suffices to show that if m maximizes F(m), then c(m) = cm1,m2
min .

In the proof of Proposition 2 it is shown that c(m) = cm1,m2
min is implied by the

following property: if A1,A2,B1,B2 ⊆VU with A1∩B1 = /0, A1∩B2 �= /0, A1 �= A2,

m(A1,B1) > 0 and m(A2,B2) > 0, then A2 ∩B1 = /0 and A2 ∩B2 �= /0.

Assume that m maximizes F(m) and consider the transformation m �−→ m′
defined in the proof of Proposition 2. If the hypothesis of the property stated

above holds, we have

F
(
m′) = F(m)+ ε( f (|A1 ∩B2|)+ f (|A2 ∩B1|)− f (|A1 ∩B1|)− f (|A2 ∩B2|)) >

> F(m)+ ε( f (|A2 ∩B1|)+ |U|− f (|A2 ∩B2|)) .

6The proof of Proposition 3 suggests an iteration algorithm for solving this problem: start for

instance from mD and recursively apply a transformation of the form m �−→ m′ in order to increase

the value of the linear functional ∑m (A,B) f (|A∩B|). I have not studied the properties of such an

algorithm yet.
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Therefore F(m′) ≤ F(m) implies f (|A2 ∩B1|) < 0 and f (|A2 ∩B2|) ≥ 0; that is,

A2 ∩B1 = /0 and A2 ∩B2 �= /0. �

The least specific jba minimizing the conflict is not always unique, thus

m1 �m2 is not always defined. Consider first the set S of pairs (m1,m2) for which

the operator � is defined: the following properties can be easily verified. In S
the operator � satisfies the three basic requirements stated above (notice that if

(m1,m2) ∈ S , then (m1 ◦ f ,m2 ◦ f ) ∈ S and (m′
1,m

′
2) ∈ S ). If (m1,m2) ∈ S , then

(m2,m1) ∈ S and m1 � m2 (A,B) = m2 � m1 (B,A) for all A,B ⊆ VU . If m ∈ MU ,

then (m,m) ∈ S and m� m(A,A) = m(A) for all A ⊆ VU . The last two properties

imply commutativity and idempotency for the respective combinations of beliefs.

Commutativity is a necessary requirement in symmetrical situations where

the two sources of information have the same importance and credibility. In other

situations we can prefer that one of the two beliefs has a prominent role in the

combination: since these cases can be worked out with other methods (such as

discounting), I shall consider commutativity as necessary.

For any pair of bbas m1,m2 ∈ MU , the least specific jbas minimizing the con-

flict form a convex polytope (i.e. the bounded intersection of a finite number of

closed half-spaces) in R
22|VU |

. Therefore the completion of the definition of the

operator � consists in a rule for assigning to every pair of bbas a point of the

respective convex polytope, in such a way that commutativity and the first two

basic requirements remain satisfied (the third one being trivially satisfied). Sym-

metry considerations could lead to the choice of the centre of the polytope (that

is, the barycentre with respect to the uniform mass density): this choice fulfills

the requirements. Another possibility fulfilling them is for instance the selection

of the point of the polytope which minimizes the Euclidean distance from mD . I

think that the choice of a rule should be based not only on its theoretical prop-

erties, but also on considerations about the computational complexity of possible

implementations of this rule; since I have not analysed this aspect yet, I leave the

question of the completion of the definition of � open. The contents of the rest

of this paper are independent of any particular completion of this definition (such

that the above requirements are fulfilled): simply let � be the obtained operator

and let � be the respective rule for the combination of beliefs.

Both rules ⊕ and � satisfy the three basic requirements (to be precise, the

corresponding operators satisfy them) and commutativity; ⊕ is associative, while

� is idempotent. Dempster’s one is perhaps the only rule of the form ⊗ with

the four common properties and associativity;7 anyway, Example 1 shows that

associativity and idempotency are two incompatible properties for rules of this

form, even if we abandon every other assumption.

7The axiomatic derivations of Dempster’s rule in Klawonn and Schwecke [5] and Smets [9] do

not allow an answer to this question, since both sets of axioms contain a property which is stronger

than the ones considered here; while Klawonn and Smets [6] consider a framework which is more

restrictive than the one used here.
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Example 1 Let q ∈ U and 1
2 < α < 1. Let bel1 and bel2 be the minimal beliefs

with bel1 (q) = α and bel2 (¬q) = α, respectively. That is, m1 (Q) = m2
(
Q

)
= α

and m1 (VU) = m2 (VU) = 1−α, with Q = TU (q) and Q = VU\Q.
Then the bba m associated with bel1 ⊗ bel2 satisfies m(Q) = m

(
Q

)
= β and

m(VU) = 1−2β, for a β such that 0≤ β≤ 1
2 (the value of β depends on the choice

of a jba).
If we assume idempotency and associativity, we obtain

bel1 ⊗bel2 = (bel1 ⊗bel1)⊗bel2 = bel1 ⊗ (bel1 ⊗bel2) .

That is, there is a jba m ∈ M m1,m
U with

m
(
Q

)
=

m
(
VU,Q

)
1− c(m)

=
m

(
Q

)−m
(
Q,Q

)
1−m

(
Q,Q

) .

Therefore c(m) = m
(
Q,Q

)
= 0, and from Proposition 1 follows that

β = bel1 ⊗bel2 (q) ≥ bel1 (q) = α,

which is a contradiction to β ≤ 1
2 < α. Thus idempotency and associativity are

incompatible (if |U| ≥ 1).

In order to combine two beliefs without assuming the independence of the

sources, I suggest the rule �. This can be considered as the most conservative

rule of the form ⊗: it conserves as much as possible of both beliefs (it has mini-

mal conflict, i.e. maximal monotonicity) without adding anything (it has minimal

specificity among the rules with minimal conflict). It is idempotent, thus it can-

not be associative. It can be easily verified (for instance by considering epistemic

probabilities, defined in Example 3) that associativity is incompatible also with

the minimization of the conflict (which is the basic feature of the rule �).

Idempotency is only a particular case of the following property of the rule �:

if bel2 is a specialization of bel1 (i.e. m2 can be obtained through redistribution of

m1 (A) to the non-empty sets B ⊆ A, for all A ⊆VU ), then bel1 �bel2 = bel2. This

property is important if strong dependence is possible: if bel2 is a specialization

of bel1, the information encoded by bel1 can be part of the information encoded

by bel2, in which case the result of pooling the information is actually bel2.

Associativity is important because (with commutativity) it implies that the re-

sult of the combination of n beliefs is independent of the order in which these

beliefs are combined. In a sense, this independence of the order can be obtained

also for the rule �: if we have to combine n beliefs simultaneously, we can con-

sider the set of n-dimensional jbas and extend our rule for the selection of a jba

to the n-dimensional case. An interesting problem could be the search for an ana-

logue of Proposition 2 for the n-dimensional case.

Example 2 and Example 3 illustrate the differences between the two rules ⊕
and � in two simple situations.
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Example 2 Consider the situation of Example 1. Since bel1 and bel2 are not com-
patible, the monotonicity of their combination is not admissible. In fact, for both
ϕ ∈ {q,¬q} we have max(bel1,bel2)(ϕ) = α > 1

2 , while bel1 ⊗bel2 (ϕ) = β ≤ 1
2 .

Using ⊕ we obtain β = α
α+1 < 1

2 , whereas using � we obtain β = 1
2 . Thus, unlike

the rule ⊕, the rule � allows only the necessary nonmonotonicity.
In Example 1 we have seen that no rule of the form ⊗ can satisfy both equa-

tions bel1⊗bel1 = bel1 and (bel1 ⊗bel1)⊗bel2 = bel1⊗(bel1 ⊗bel2). Obviously,
⊕ satisfies the second one, whereas � satisfies the first one. If we want to combine
the three beliefs of the second equation in a unique way with the rule �, we can
extend it to the 3-dimensional case. The 3-dimensional jba minimizing the con-
flict is unique and the respective combination of the three beliefs is the one that
we obtain by using the rule � in the left-hand side of the equation: bel1 �bel2.

Example 3 The beliefs bel1 and bel2 considered in Example 2 are consonant. In
some senses, at the opposite extreme from consonant beliefs we find the epistemic
probabilities. A belief about U with bba m is an epistemic probability if m(A) = 0

for all A ⊆ VU with |A| �= 1. Such a belief is completely defined by the r = |VU |
values p1, . . . , pr that m assigns to the A ⊆ VU with |A| = 1 (it suffices to decide
an order for the elements of VU).

Let bel1 and bel2 be two epistemic probabilities defined by p(1)
1 , . . . , p(1)

r and

p(2)
1 , . . . , p(2)

r , respectively. Then their combination bel1⊗bel2 is still an epistemic
probability; let it be defined by p1, . . . , pr. The monotonicity is admissible only if
bel1 = bel2, and to assure this monotonicity a rule must be idempotent. Using ⊕
we obtain that pi = bp(1)

i p(2)
i for each i ∈ {1, . . . ,r}, where b ≥ 1 is a normaliz-

ing constant. Using � we obtain that pi = cmin
{

p(1)
i , p(2)

i

}
≥ min

{
p(1)

i , p(2)
i

}
for each i ∈ {1, . . . ,r}, where c ≥ 1 is a normalizing constant (notice that the
inequality is strict unless bel1 = bel2).

If we want to simultaneously combine n epistemic probabilities defined, re-

spectively, by p( j)
1 , . . . , p( j)

r (for each j ∈ {1, . . . ,n}), we can easily extend the
rule � to the n-dimensional case. The result of the combination is the epis-

temic probability defined by p1, . . . , pr, with pi = d min
{

p(1)
i , . . . , p(n)

i

}
for each

i ∈ {1, . . . ,r}, where d ≥ 1 is a normalizing constant.

5 A Generalization of Bayes’ Theorem
Now I present a situation in which a combination rule minimizing the conflict

is especially sensible and in which we can get many results without need to con-

sider the whole combination of beliefs: it suffices to know the value of the conflict

between them (which for a combination rule minimizing the conflict can be de-

termined thanks to Proposition 2).
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Consider a hypothesis h implying a belief bel about U (with h /∈ U). If we

have a belief belH about H = {h}, we can combine these two beliefs in the fol-

lowing way. We first expand bel to the belief about U ′ = U ∪H which contains

nothing more than the implication h ⇒ bel: let (h ⇒ bel) be the minimal belief

about U ′ assigning for all ϕ ∈ LU the value bel (ϕ) to the formula h → ϕ.8 Then

we can combine (h ⇒ bel) with the vacuous extension of belH to LU′ , obtaining

belH �U′ ⊕(h ⇒ bel) .

The use of Dempster’s rule is justified in the sense that this is only a formal con-

struction to apply a “metabelief” belH about H to the consequence bel of the

hypothesis h (in particular, there can be no conflict). The resulting belief about U
is (

belH �U′ ⊕(h ⇒ bel)
)

�U= belH (h)bel +(1−belH (h))bel�U;

that is, the discounting of bel with discount rate 1− belH (h). This is sensible,

since plH (¬h) = 1−belH (h) measures the amount of our uncertainty about the

hypothesis h.

If we get some information in the form of a belief bel ′ about U, we can com-

bine its vacuous extension to LU′ with our belief about U ′, obtaining in particular

a new belief bel′H about H :

bel′H =
((

belH �U′ ⊕(h ⇒ bel)
)
⊗m bel′ �U′)

�H .

Thus in order to get bel′H , we must choose a jba m. If we reason on the form of

the marginal bbas, we can see that m is sensible only if it is “naturally” based on

a jba mh for the combination of bel and bel ′.9 Then c(m) = belH (h)c(mh), so

the combination is possible unless we are sure of the hypothesis and this totally

conflicts with the new information (i.e. belH (h) = 1 and c(mh) = 1). The changes

in the belief about H are entirely determined by the conflict c(mh):

bel′H (h) =
belH (h)− c(m)

1− c(m)
≤ belH (h) and

bel′H (¬h) =
belH (¬h)

1− c(m)
≥ belH (¬h) .

8If m is the bba associated with bel, then the bba associated with (h ⇒ bel) is the func-

tion m′ on 2
VU′

defined by m′ (TU′ (h → ϕ)) = m(TU (ϕ)) for all ϕ ∈ LU , and m′ (A) = 0 if

A /∈ TU′ ({h → ϕ : ϕ ∈ LU}).
9If mH and m′ are the bbas associated with belH and bel′ , respectively, then m is the jba which

satisfies (for all ϕ,ψ ∈ LU )

m(TU′ (h∧ϕ) ,TU′ (ψ)) = mH (TH (h))mh (TU (ϕ) ,TU (ψ)) ,

m (TU′ (h → ϕ) ,TU′ (ψ)) = mH (VH )mh (TU (ϕ) ,TU (ψ)) and

m(TU′ (¬h) ,TU′ (ψ)) = mH (TH (¬h))m′ (TU (ψ)) .
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If 0 < belH (h) < 1, then bel′H (h) is a strictly decreasing function of c(mh), and

in particular we maintain our belief in h only if c(mh) = 0. Thus c(mh) (that is,

the conflict between the implications of the hypothesis h and the new information)

is clearly a measure of disagreement. Therefore it is especially sensible to choose

a jba mh minimizing the conflict (and if we are only interested in the new belief

about H , then knowing the minimal conflict suffices). With such a choice we

obtain in particular that if bel and bel ′ are compatible, then we maintain our belief

in h (this is in general not true if mh = mD, even if bel = bel′).
Consider now the general case with n hypotheses h1, . . . ,hn implying, respec-

tively, the beliefs bel1, . . . ,beln about U (with h1, . . . ,hn /∈ U). Given an “a priori”

belief belH about H = {h1, . . . ,hn} and an “observation” belief bel ′ about U, we

can combine these beliefs to obtain an “a posteriori” belief bel ′H about H :

bel′H =

((
belH �U′ ⊕

nO

i=1

(hi ⇒ beli) �U′
)
⊗m bel′ �U′

)
�H .

As before, U ′ = U ∪H and the use of Dempster’s rule in the first combination

can be justified as a formal construction. The new element is

nO

i=1

(hi ⇒ beli) �U′
,

which is any combination of the n beliefs (hi ⇒ beli) �U′
using the general rule ⊗

(we can obtain it by n−1 applications of the binary rule or with a n-dimensional

jba). This allows the hypotheses to be dependent (for instance if two hypotheses

differ only by a detail and the two implied beliefs are almost the same), and it is

important to notice that anyway there can be no conflict among the n + 1 beliefs

belH �U′
and (hi ⇒ beli) �U′

.

This way to update a belief about H is a broad generalization of Bayes’ the-

orem for epistemic probabilities and of Smets’ generalized Bayesian theorem

(gBt) for normalized beliefs (see for instance Smets [11]). The construction of
nO

i=1

(hi ⇒ beli) �U′
allows a lot of freedom, which of course can be limited by

some additional assumptions. Before introducing two such assumptions, I con-

sider a simple special case.

Let belH be a belief about H satisfying

n

∑
i=0

belH (ϕi) = 1, where

ϕ0 = ¬h1 ∧ . . .∧¬hn and

ϕi = ¬h1 ∧ . . .∧¬hi−1 ∧hi ∧¬hi+1 . . .∧¬hn if i ∈ {1, . . . ,n} ;

that is, belH is an epistemic probability on ϕ0, . . . ,ϕn. Then

belH �U′ ⊕
nO

i=1

(hi ⇒ beli) �U′
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is independent of the choice of
nO

i=1

(hi ⇒ beli) �U′
, and its restriction to LU is

n

∑
i=1

belH (hi)beli + belH (ϕ0)bel�U .

This shows that ϕ0 can be considered as an additional hypothesis h0 implying the

vacuous belief bel0 = bel�U , and belH can be seen as an epistemic probability on

the mutually exclusive and exhaustive hypotheses h0, . . . ,hn. As before, in order

to get bel′H , we must choose a jba m. And as before, if we reason on the form

of the marginal bbas, we can see that m is sensible only if it is “naturally” based

on the jbas mi of the combinations of beli and bel′ (for each i ∈ {0, . . . ,n}).10

Then c(m) =
n

∑
i=1

belH (hi)c(mi) (notice that c(m0) = 0), so the combination is

possible unless we are sure that the truth is among some hypotheses and these to-

tally conflict with the new information. The belief about H remains an epistemic

probability on ϕ0, . . . ,ϕn, and as before, the changes are entirely determined by

the conflicts c(m1) , . . . ,c(mn):

bel′H (hi) =
1− c(mi)

1− c(m)
belH (hi) for each i ∈ {0, . . . ,n} .

Thus the belief in a hypothesis hi increases if and only if the respective conflict

c(mi) is less than c(m), which is a weighted average of the conflicts of the n + 1

hypotheses (h0 included). Therefore the conflicts c(m1) , . . . ,c(mn) measure the

disagreement between the respective hypotheses and the new information, and

thus it is especially sensible to choose jbas m1, . . . ,mn minimizing the conflict.

With such a choice we obtain in particular that if beli and bel′ are compatible,

then the belief in hi does not decrease (and it increases if c(m) > 0); this is in

general not true if mi = mD, even if beli = bel′.
I now consider the two announced assumptions which limit the freedom in the

construction of
nO

i=1

(hi ⇒ beli) �U′
. The first one is that the hypotheses h1, . . . ,hn

are mutually exclusive (i.e. belH (ϕ0 ∨ . . .∨ϕn) = 1), but not necessarily exhaus-

tive (which would mean belH (ϕ1 ∨ . . .∨ϕn) = 1). The second one is that the

beliefs bel1, . . . ,beln are issued from independent sources of information (the

sources can be identified with the respective hypotheses h1, . . . ,hn). Since the hy-

potheses are mutually exclusive, this simply means that the belief about U implied

10m is the jba which satisfies (for all ϕ,ψ ∈ LU and i ∈ {0, . . . ,n})

m(TU′ (ϕi ∧ϕ) ,TU′ (ψ)) = belH (ϕi)mi (TU (ϕ) ,TU (ψ)) .
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by a disjunction of hypotheses is the disjunctive combination of the respective be-

liefs (the disjunctive rule of combination is defined for instance in Smets [11]).

With these two additional assumptions, we obtain

bel′H =

((
belH �U′ ⊕

nM

i=1

(hi ⇒ beli) �U′
)
⊗m bel′ �U′

)
�H .

This is a generalization of Smets’ gBt for normalized beliefs (which corresponds

to the special case with m = mD), and thus also of Bayes’ theorem for epistemic

probabilities. If bel′ has the form belϕ
U (in the literature the gBt is usually re-

stricted to this case), the jba m is unique and the updated belief bel ′H is the one

that we would obtain by applying the gBt to the n+1 hypotheses h0, . . . ,hn (with

bel0 = bel�U). But if bel′ has not the form belϕ
U , we must choose a jba m; and as

before, m can be sensible only if it is “naturally” based on the jbas of the combina-

tions of the new information bel ′ with the beliefs implied by the hypotheses or by

any disjunction of hypotheses. Since also in this more general case the conflicts

measure the disagreement between the respective hypotheses (or disjunctions of

hypotheses) and the new information, it is especially sensible to choose jbas min-

imizing the conflict. With such a choice we obtain in particular that if the beliefs

implied by some hypotheses are compatible with the new information, then the

values of the belief in these hypotheses and in their disjunctions do not decrease

(and they increase if c(m) > 0). If instead we use Dempster’s rule (that is, we use

the gBt), we can get very bad results, since the conflict between the new infor-

mation bel′ and a hypothesis h implying the belief bel can be very high, even if

bel′ = bel (i.e. the prevision of h is perfect). In fact, if a hypothesis is correct, can

we assume that the belief which is a theoretical consequence of the hypothesis and

the belief which is a practical consequence of the correctness of the hypothesis are

independent?

6 Conclusion
In this paper a rule has been proposed to combine two belief functions issued

from sources of information whose independence is doubtful. This rule increases

the monotonicity of the reasoning, assuring in particular complete monotonicity if

this is admissible. The proposed combination rule is commutative and idempotent.

It is not associative, but it can be easily extended to a rule for the simultaneous

combination of any number of belief functions.

The proposed combination rule leads to sensible results in a generalization of

Bayes’ theorem for epistemic probabilities and of Smets’ generalized Bayesian

theorem. This generalization allows the new information to be any belief function:

in this situation the use of Dempster’s rule (that is, the independence assumption)

leads to questionable results.
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