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Abstract. The paper pursues the definition of a maxitive integral on
all real-valued functions (i.e., the integral of the pointwise maximum of
two functions must be the maximum of their integrals). This definition
is not determined by maxitivity alone: additional requirements on the
integral are necessary. The paper studies the consequences of additional
requirements of invariance with respect to affine transformations of the
real line.
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1 Introduction
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In theories of reasoning and decision making under uncertainty, measures (or
capacities) are used to describe uncertain belief or information, and can be ex-
tended to integrals in order to evaluate and compare uncertain (real-valued)
payoffs. In particular, the additive capacities used in the Bayesian theory can be
extended (almost) uniquely to an additive integral. By contrast, the extension to
a maxitive integral of the maxitive capacities used in alternative theories is not
unique, and additional requirements are needed in order to determine it. The
present paper focuses on additional requirements of invariance with respect to
the choice of the measurement scale of the payoffs.

The invariance with respect to the choice of the scale unit determines the
Shilkret integral on nonnegative functions. This integral satisfies some properties
that are important for the evaluation of uncertain payoffs, such as subadditivity
or the law of iterated expectations, but it cannot be extended in a reasonable way
to a maxitive integral on all real-valued functions. By contrast, the invariance
with respect to the choice of the zero point of the measurement scale (almost)
determines a maxitive integral on all real-valued functions, called convex integral.
The name comes from the property of convexity, which is satisfied besides other
important ones for the evaluation of uncertain payoffs, such as the law of iterated
expectations.

The paper is organized as follows. The next section introduces the concepts of
capacities and of integrals as their extensions. The Shilkret and convex integrals
are then studied in Sects. 3 and 4, respectively. The final section gives directions
for further research.
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2 Integrals as Extensions of Capacities

Let Ω be a set and let µ be a capacity on Ω. That is, µ : P(Ω) → [0, 1] is a
monotonic set function such that µ(∅) = 0 and µ(Ω) = 1, where monotonic
means that µ(A) ≤ µ(B) for all A ⊆ B ⊆ Ω.

The capacity µ can be interpreted as a quantitative description of uncertain
belief or information about ω ∈ Ω. The larger the value µ(A), the larger the
plausibility of ω ∈ A, or the larger the implausibility of ω /∈ A. This is in
agreement with the monotonicity of µ, while the requirements µ(∅) = 0 and
µ(Ω) = 1 can be interpreted as meaning that ω ∈ ∅ is impossible and that
nothing speaks against ω ∈ Ω, respectively.

More precise interpretations of the values of µ can lead to additional require-
ments on the set function µ. The best known additional requirement is (finite)
additivity: µ(A∪B) = µ(A)+µ(B) for all disjoint A,B ⊆ Ω. Additive capacities
(also called probability charges, or finitely additive probability measures) are the
quantitative descriptions of uncertain belief about ω ∈ Ω used in the Bayesian
theory [1,2].

The continuity (from below and from above) of the set function µ is often
required together with the additivity for technical reasons. The resulting re-
quirement is countable additivity: µ(

⋃
n∈NAn) =

∑
n∈N µ(An) for all sequences

(An)n∈N of (pairwise) disjoint An ⊆ Ω. Countably additive capacities (also called
probability measures) are the quantitative descriptions of uncertain information
about ω ∈ Ω used in probability theory [3]. However, countable additivity is too
strong a requirement when Ω is uncountable, and therefore µ cannot usually be
defined on the whole power set P(Ω), at least under the axiom of choice [4].

A common requirement on the set function µ alternative to additivity is (fi-
nite) maxitivity: µ(A ∪ B) = µ(A) ∨ µ(B) for all (disjoint) A,B ⊆ Ω. Maxitive
capacities (also called possibility measures, consonant plausibility functions, or
idempotent measures) have been studied in various contexts [5,6,7]. As quan-
titative descriptions of uncertain belief or information about ω ∈ Ω, maxitive
capacities play a central role in possibility theory [8], but they also appear for
instance as consonant plausibility functions in the theory of belief functions [9],
or as supremum preserving upper probabilities in the theory of imprecise prob-
abilities [10]. Moreover, the description of uncertain belief by means of maxitive
capacities also corresponds for example to the descriptions by means of degrees
of potential surprise [11], or of degrees of support by eliminative induction [12].
Of particular importance in statistical applications is the fact that the likelihood
(ratio) of composite hypotheses is a maxitive capacity [13,14].

The requirement of maxitivity of the set function µ can be generalized to the
requirement of κ-maxitivity (where κ is a cardinal): µ(

⋃
A∈AA) =

∨
A∈A µ(A)

for all nonempty A ⊆ P(Ω) of cardinality at most κ. Maxitivity corresponds to
κ-maxitivity when κ is finite and at least 2. Contrary to the case of additivity, the
requirement of κ-maxitivity for infinite cardinals κ does not pose any problem:
a κ-maxitive set function can always be extended from a ring of subsets of Ω to
the whole power set P(Ω) [15, Theorem 1].
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The capacity µ on Ω has a particularly simple description when it is κ-
maxitive with κ the cardinality of Ω. In fact, µ is then completely described by
its values on the singletons: µ(A) =

∨
ω∈A µ{ω} for all nonempty A ⊆ Ω. This

implies in particular the κ-maxitivity of µ for all cardinals κ, also called complete
maxitivity. For example, in statistics, the likelihood of composite hypotheses is
a completely maxitive capacity: λ(H) =

∨
θ∈H λ{θ} for all composite hypotheses

H ⊆ Θ, where Θ is a set of simple hypotheses, and θ 7→ λ{θ} is the (relative)
likelihood function on Θ [13,14].

Since each A ⊆ Ω can be identified with its indicator function IA on Ω,
the capacity µ can be identified with a functional on the set of all indicator
functions IA with A ⊆ Ω. The remaining of this paper studies extensions of
this functional to larger classes of functions on Ω, and in order to avoid trivial
results, it is assumed that there is a C ⊆ Ω such that 0 < µ(C) < 1.

Let F be a set of extended real-valued functions f : Ω → R. A functional
F : F → R is said to extend the capacity µ to F if F (IA) = µ(A) for all
A ⊆ Ω. In this definition, as in the rest of the paper, it is assumed as part of
the condition that the expressions are well-defined. That is, F can extend µ to
F only if IA ∈ F for all A ⊆ Ω, because otherwise the expression F (IA) = µ(A)
would not be well-defined.

2.1 Extension of Additive Capacities

In the Bayesian theory, the uncertain belief about ω ∈ Ω is described by an
additive capacity µ on Ω, while the evaluation of a (bounded) uncertain payoff
f(ω) on the basis of this belief is given by its expectation

∫
f dµ, which is defined

as follows.

Let B be the set of all bounded functions f : Ω → R, and let S ⊆ B be the
subset of all simple functions (i.e., all functions s : Ω → R such that their images
s(Ω) are finite). The (standard) integral of f ∈ B with respect to an additive
capacity µ on Ω is denoted by

∫
f dµ and is defined as∫

f dµ =
∨

s∈S : s≤f

∑
x∈s(Ω)

xµ{s = x} =
∧

s∈S : s≥f

∑
x∈s(Ω)

xµ{s = x},

where {s = x} is the usual short form for the set {ω ∈ Ω : s(ω) = x}. The integral
is well-defined when µ is additive [16], and corresponds to the Lebesgue integral
when µ is countably additive [17].

The next theorem shows that the integral with respect to an additive capacity
µ on Ω is the unique monotonic, additive extension of µ to B. A functional
F : F → R is said to be monotonic if F (f) ≤ F (g) for all f, g ∈ F such that
f ≤ g, while F is said to be (finitely) additive if F (f + g) = F (f) + F (g) for all
f, g ∈ F . Note that the additivity of a functional F on B implies its monotonicity
when some weak additional requirement is satisfied: for example when F (f) ≥ 0
for all f ∈ B such that f ≥ 0.
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Theorem 1. When µ is additive, its additive extension to B is not unique, but
the functional f 7→

∫
f dµ on B is the unique monotonic, additive extension of

µ to B.

Proof. When µ is additive, the functional F : f 7→
∫
f dµ extends µ and is

monotonic and additive [16, Chap. 4]. If F ′ is an additive extension of µ to B,
then its additivity implies F ′(α f) = αF ′(f) for all α ∈ Q and all f ∈ B, and
therefore also

F ′(s) =
∑

x∈s(Ω)

xµ{s = x} = F (s)

for all simple functions s ∈ S such that s(Ω) ⊆ Q. If F ′ is also monotonic, then
its monotonicity implies F ′(f) = F (f) for all f ∈ B.

However, additive extensions of µ to B that are not monotonic also exist, at
least under the axiom of choice. Let τ : R → R be a discontinuous additive func-
tion such that τ(0) = 0 and τ(1) = 1 [18, Corollary 5.2.1]. Then the functional
F ′ : f 7→

∫
τ ◦ f dµ on B is an additive extension of µ, but F ′ ̸= F . ⊓⊔

2.2 Extension of Maxitive Capacities

In the Bayesian theory, the uncertain belief about ω ∈ Ω is described by an
additive capacity µ on Ω, and the evaluations of uncertain payoffs f ∈ B are
described by the unique monotonic, additive extension of µ to B. Analogously,
when the uncertain belief or information about ω ∈ Ω is described by a maxitive
capacity µ on Ω, the evaluations of uncertain payoffs f ∈ B can be described
by a maxitive extension of µ to B. However, the next theorem shows that the
maxitive extension to B of a maxitive capacity µ on Ω is not unique. A functional
F : F → R is said to be maxitive if F (f ∨ g) = F (f) ∨ F (g) for all f, g ∈ F .
Note that the maxitivity of a functional implies its monotonicity.

Theorem 2. When µ is maxitive, its maxitive extension to B is not unique.

Proof. When µ is maxitive, both functionals

F : f 7→
∨

x∈R>0

xµ{f > x} and F ′ : f 7→
∨

x∈R>0

(x ∧ µ{f > x})

on B are maxitive extensions of µ, because µ{f ∨ g > x} = µ{f > x}∨µ{g > x}
for all f, g ∈ B and all x ∈ R. However, F ̸= F ′, since for instance F (2) = 2,
while F ′(2) = 1. When f ≥ 0, the values F (f) and F ′(f) are known as Shilkret
and Sugeno integrals of f with respect to µ, respectively [5,19]. ⊓⊔

In order to obtain a unique extension to B of a maxitive capacity µ on Ω,
additional requirements are necessary, besides maxitivity (and monotonicity). A
particularly important requirement for evaluations of uncertain payoffs is their
invariance with respect to changes in the measurement scale of the payoffs, such
as changes in the location of the zero point or changes in the scale unit. A
functional F : F → R is said to be location invariant if F (f +α) = F (f)+α for
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all f ∈ F and all α ∈ R, while F is said to be scale invariant if F (α f) = αF (f)
for all f ∈ F and all α ∈ R>0.

The (standard) integral with respect to additive capacities is location and
scale invariant [16]. The best known location and scale invariant integral with
respect to nonadditive capacities is the one of Choquet [20,21]. The Choquet
integral of f ∈ B with respect to a capacity µ on Ω is denoted by

∫
Cf dµ and is

defined as ∫ C

f dµ =

∫ 0

−∞
(µ{f > x} − 1) dx+

∫ +∞

0

µ{f > x} dx,

where the right-hand side is the well-defined sum of two improper Riemann
integrals. The Choquet integral with respect to a capacity µ on Ω is a mono-
tonic extension of µ to B, which is additive when µ is additive [22]. Therefore,∫
Cf dµ =

∫
f dµ for all f ∈ B when µ is additive.

The next theorem shows that no maxitive extension to B of a maxitive ca-
pacity µ on Ω is location and scale invariant. Maxitive extensions satisfying one
of these two additional requirements are studied in the next two sections.

Theorem 3. When µ is maxitive, there is no location and scale invariant, max-
itive extension of µ to B.

Proof. Let F be a scale invariant, maxitive extension to B of a maxitive capacity
µ on Ω. As assumed above, there is a C ⊆ Ω such that 0 < µ(C) < 1. Hence,
µ(Ω \ C) = 1 and

F (IC + 1) = F
(
(2 IC) ∨ IΩ\C

)
= (2µ(C)) ∨ 1 < µ(C) + 1 = F (IC) + 1,

and therefore F is not location invariant. ⊓⊔

3 Shilkret Integral

Let E be the set of all extended real-valued functions f : Ω → R, let E+ ⊆ E be
the subset of all nonnegative functions, and let B+ = B ∩ E+ the subset of all
bounded, nonnegative functions. The Shilkret integral of f ∈ E+ with respect to
a capacity µ on Ω is denoted by

∫
Sf dµ and is defined as∫ S

f dµ =
∨

x∈R>0

xµ{f > x}.

The Shilkret integral has a particularly simple expression when µ is completely
maxitive:

∫
Sf dµ =

∨
ω∈Ω f(ω)µ{ω} for all f ∈ E+ [5].

The next theorem shows that the Shilkret integral with respect to a maxitive
capacity µ on Ω is the unique scale invariant, maxitive extension of µ to B+. The
Shilkret integral maintains κ-maxitivity also for infinite cardinals κ. A functional
F : F → R is said to be κ-maxitive if F (

∨
f∈G f) =

∨
f∈G F (f) for all nonempty

G ⊆ F of cardinality at most κ.
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Theorem 4. When µ is maxitive, the functional f 7→
∫
Sf dµ on B+ is the

unique scale invariant, maxitive extension of µ to B+. Moreover, when κ is an
infinite cardinal and µ is κ-maxitive, the functional f 7→

∫
Sf dµ on E+ is the

unique scale invariant, κ-maxitive extension of µ to E+.

Proof. When κ is a cardinal and µ is κ-maxitive, the functional f 7→
∫
Sf dµ on

E+ is a scale invariant, κ-maxitive extension of µ to E+ [15, Lemma 1]. Such an
extension is unique on B+ when κ ≥ 2 [15, Theorem 2 (iii)], and it is unique also
on E+ when κ is infinite [15, Theorem 3 (iii)]. ⊓⊔

An important property for evaluations of uncertain payoffs is convexity,
meaning that diversification does not increase the risk [23,24]. A functional
F : F → R is said to be convex if F (λ f + (1− λ) g) ≤ λF (f) + (1 − λ)F (g)
for all λ ∈ (0, 1) and all f, g ∈ F , whereas F is said to be subadditive if
F (f + g) ≤ F (f) + F (g) for all f, g ∈ F . Note that convexity and subaddi-
tivity are equivalent for a scale invariant functional.

The characterization of the capacities with respect to which the Choquet
integral is convex (i.e., subadditive) is a well-known result [20,22,21]. The next
theorem gives also a characterization of the capacities with respect to which
the Shilkret integral is convex (i.e., subadditive). The capacity µ is said to be
submodular if µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B) for all A,B ⊆ Ω. Note that
additive or maxitive capacities are submodular.

Theorem 5. The functional f 7→
∫
Cf dµ on B is convex if and only if µ is

submodular, while the functional f 7→
∫
Sf dµ on E+ is convex if and only if µ

is maxitive.

Proof. Both functionals f 7→
∫
Cf dµ on B and f 7→

∫
Sf dµ on E+ are scale in-

variant. The first one is subadditive if and only if µ is submodular [21, Chap. 6],
while the second one is subadditive if and only if µ is maxitive [15, Theo-
rem 4 (iii)]. ⊓⊔

The Shilkret integral with respect to maxitive capacities satisfies also other
important properties for evaluations of uncertain payoffs, such as the law of
iterated expectations (or evaluations). By contrast, the Choquet integral satisfies
this law only with respect to additive capacities (i.e., only when it corresponds
to the standard integral) [15,25]. However, the Shilkret integral is defined only
for nonnegative functions, and its extension to functions taking negative values
is problematic.

When µ is maxitive, the Shilkret integral is the unique scale invariant, max-
itive extension of µ to B+, but the next theorem shows that its further (scale
invariant, maxitive) extension to B is not unique. In fact, the values assigned
to negative functions by such extensions are independent from µ. To impose a
dependence from µ, some kind of symmetry of the extension could be required.
For example, since µ determines the values of its extensions on all indicator
functions IA, the determination of the values on all negative indicator functions
−IA could be required. An extension F : F → R of a capacity µ on Ω is said
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to be symmetric if F (−IA) = −µ(A) for all A ⊆ Ω, while F is said to be dual
symmetric if F (−IA) = −µ(A) for all A ⊆ Ω, where the dual capacity µ on Ω
is defined by µ(A) = 1−µ(Ω \A). Note that all location invariant extensions of
a capacity are dual symmetric, and the (standard) integral with respect to an
additive capacity is also symmetric.

However, the next theorem also shows that no scale invariant, maxitive ex-
tension to B of a maxitive capacity µ on Ω is symmetric or dual symmetric,
and neither is it convex and calibrated. A functional F : F → R is said to be
calibrated if F (α) = α for all constant functions α ∈ F . Note that all scale
invariant extensions of µ to B+, all scale invariant, (dual) symmetric extensions
of µ to B, and all location invariant extensions of µ to B are calibrated.

Theorem 6. When µ is maxitive and γ is a real-valued function on Ω such that∧
ω∈Ω γ(ω) = 1, the functional

f 7→
{∨

ω∈Ω f(ω) γ(ω) if f < 0,∫
S(f ∨ 0) dµ otherwise

on E is a scale invariant, calibrated, maxitive extension of µ to E, but no scale
invariant, calibrated, maxitive extension of µ to B is symmetric, dual symmetric,
or convex.

Proof. Since the functional f 7→
∫
Sf dµ on E+ is a scale invariant, calibrated,

maxitive extension of µ to E+ when µ is maxitive, its further extension to E
defined in the theorem is also scale invariant, calibrated, and maxitive.

Let F be a scale invariant, calibrated, maxitive extension to B of a maxitive
capacity µ on Ω. As assumed above, there is a C ⊆ Ω such that 0 < µ(C) < 1.
Hence, µ(Ω \ C) = 1 and

F (−IC) ∨ F (−IΩ\C) = 0 > −µ(C) = (−µ(C)) ∨ (−µ(Ω \ C)) ,

and therefore F is not symmetric. Neither can F be dual symmetric, because
0 < µ(Ω \ C) < 1, while

F (−IΩ\C) = F
(
(−2 IΩ\C) ∨ (−1)

)
=

(
2F (−IΩ\C)

)
∨ (−1)

implies F (−IΩ\C) ∈ {−1, 0}. Finally, if f = IC ∨ µ(C), then F (f) = µ(C) and
since

F (f + (−µ(C))) = F ((1− µ(C)) IC) > 0 = F (f) + F (−µ(C)) ,

F is not subadditive (i.e., convex). ⊓⊔

4 Convex Integral

The convex integral of f ∈ E with respect to a capacity µ on Ω is denoted by∫
Xf dµ and is defined as∫ X

f dµ =
∨
x∈R

(x+ τ ◦ µ{f > x}) ,
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where τ is the function on [0, 1] defined by τ(0) = −∞ and τ(x) = x − 1
otherwise. The convex integral has a particularly simple expression when µ is
completely maxitive:

∫
Xf dµ =

∨
ω∈Ω :µ{ω}>0 (f(ω) + µ{ω} − 1) for all f ∈ E .

The next theorem shows that the convex integral with respect to a maxitive
capacity µ on Ω is the unique location invariant, maxitive extension of µ to B,
when ∅ is the only null set (i.e., µ(A) > 0 for all nonempty A ⊆ Ω). When
there are nonempty null sets, the location invariant, maxitive extension to B of
a maxitive capacity µ on Ω is not unique, but the convex integral is the only
null preserving one. An extension F : F → R of a capacity µ on Ω is said to be
null preserving if F (f) = 0 for all f ∈ F such that µ{f ̸= 0} = 0. Note that all
extensions of a capacity are null preserving when ∅ is the only null set.

Theorem 7. When µ is maxitive, the functional f 7→
∫
Xf dµ on B is the unique

location invariant, maxitive extension of µ to B if and only if ∅ is the only null
set, and in general it is the unique location invariant, null preserving, maxitive
extension of µ to B. Moreover, when κ is an infinite cardinal and µ is κ-maxitive,
the functional f 7→

∫
Xf dµ on E is the unique location invariant, null preserving,

κ-maxitive extension of µ to E.

Proof. When κ ≥ 2 is a cardinal and µ is κ-maxitive, the functional f 7→
∫
Xf dµ

on E is a location invariant, null preserving, κ-maxitive extension of µ to E [15,
Corollary 5]. Such an extension is unique on B [15, Corollary 6], and it is unique
also on E when κ is infinite [15, Corollary 7].

Let ν be the set function on P(Ω) defined by ν(∅) = −∞ and ν(A) = µ(A)−1
otherwise. When µ is maxitive, the functional f 7→

∨
x∈R (x+ ν{f > x}) on B is

a location invariant, maxitive extension of µ to B [15, Corollary 6], and it differs
from the functional f 7→

∫
Xf dµ on B when there are nonempty null sets. ⊓⊔

Convexity and subadditivity are not equivalent for functionals that are not
scale invariant. The next theorem shows that the convex integral with respect
to maxitive capacities is not subadditive. However, it is convex, and this is the
reason for its name.

Theorem 8. The functional f 7→
∫
Xf dµ on B is convex if and only if µ is

maxitive. But when µ is maxitive, no location invariant, maxitive extension of
µ to B is subadditive.

Proof. When µ is maxitive, the functional f 7→
∫
Xf dµ on B is convex [15,

Theorem 7]. But when µ is not maxitive, there are A,B ⊆ Ω and α ∈ R>0 such
that µ(A∪B)−α > µ(A)∨µ(B). Hence, if g = IA∪B+α IB and h = IA∪B−α IB ,
then

∫
Xg dµ = µ(A ∪B) and

∫
Xhdµ = µ(A ∪B)− α, and since∫ X(

1
2 g +

1
2 h

)
dµ = µ(A ∪B) > 1

2

∫ X

g dµ+ 1
2

∫ X

hdµ,

the functional f 7→
∫
Xf dµ on B is not convex.
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Let F be a location invariant, maxitive extension to B of a maxitive capacity
µ on Ω. As assumed above, there is a C ⊆ Ω such that 0 < µ(C) < 1, and thus
there is an n ∈ N such that n (1− µ(C)) ≥ 1. Hence, if f = (1− µ(C)) IC , then

F (n f) ≥ µ(C) > 0 = n (F (IC ∨ µ(C))− µ(C)) = nF (f),

and therefore F is not subadditive. ⊓⊔

Besides convexity and location invariance, the convex integral with respect
to maxitive capacities satisfies also other important properties for evaluations
of uncertain payoffs, such as the law of iterated expectations (or evaluations)
[15]. The convex integral can be generalized by replacing the set function τ ◦ µ
in its definition with an arbitrary monotonic set function ν on P(Ω) such that
ν(∅) = −∞ and ν(Ω) = 0, also called a penalty on Ω [15].

In particular, the convex integral with respect to completely maxitive ca-
pacities (or penalties) is strictly related to the idempotent integral of tropical
mathematics [7] and to convex measures of risk [24]. It corresponds to the func-
tional f 7→

∨
ω∈Ψ (f(ω)− ψ(ω)) on E , where Ψ ⊆ Ω is not empty and ψ is a

real-valued function on Ψ such that
∧

ω∈Ψ ψ(ω) = 0.

5 Conclusion

The present paper studied maxitive integrals with respect to maxitive capaci-
ties, and in particular the Shilkret and convex integrals. These have particularly
simple expressions when the capacities are completely maxitive. In this case,
the Shilkret and convex integrals can be characterized as evaluations of uncer-
tain payoffs by few basic decision-theoretic properties. These will be discussed
in future work, with particular emphasis on the case of likelihood-based decision
making [14,26].
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