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Abstract. Bayesian networks are commonly used for classification: a
structural learning algorithm determines the network graph, while stan-
dard approaches estimate the model parameters from data. Yet, with
few data the corresponding assessments can be unreliable. To gain ro-
bustness in this phase, we consider a likelihood-based learning approach,
which takes all the model quantifications whose likelihood exceeds a given
threshold. A new classification algorithm based on this approach is pre-
sented. Notably, this is a credal classifier, i.e., more than a single class
can be returned in output. This is the case when the Bayesian networks
consistent with the threshold constraint assign different class labels to a
test instance. This is the first classifier of this kind for general topologies.
Experiments show how this approach provide the desired robustness.

Keywords: Classification, likelihood-based learning, Bayesian networks, credal
networks, imprecise probabilities, credal classifiers.

1 Introduction

This is the unformatted version of: doi:10.1007/978-3-642-31718-7 51

The development of classifiers, i.e., algorithms to assign class labels to instances
described by a set of features, is a major problem of AI, with lots of impor-
tant applications, ranging from pattern recognition to prediction to diagnosis.
Probabilistic approaches to classification are particularly popular and effective.
In particular, the naive Bayes (e.g., [9, Chap. 17]) assumes conditional indepen-
dence for the features given the class. Despite the generally good performances
of this classifier, these assumptions are often unrealistic and other models with
less restrictive assumptions have been proposed. These can be expressed in the
framework of Bayesian networks [12] by directed graphs.
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n. 200020-132252, the Hasler foundation grant n. 10030 and the Computational Life
Sciences - Ticino in Rete project.
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Besides classifiers based on special topologies (e.g., tree-augmented [7]), struc-
tural learning algorithms (e.g., K2 [9, Chap. 18]) can learn the network structure
from data. Regarding the learning of the parameters, this can be either based on
Bayesian (e.g., a uniform Dirichlet prior) or frequentist (maximum-likelihood)
approaches. The latter is unbiased and independent from the prior specification,
but generally lead to inferior classification performances, especially on data sets
where the contingency tables, which contain the counts of the joint occurrences
of specific values of the features and the class, are characterised by several zeros
[7]. To obtain more reliable estimates for the Bayesian network parameters, a
likelihood-based approach [4,11] can be considered. This is a generalization of
the frequentist approach towards imprecise probabilities [13], i.e., robust models
based on sets of probability distributions. Loosely speaking, the idea is to con-
sider, instead of the single maximum-likelihood estimator, all the models whose
likelihood is above a certain threshold level. When applied to classification with
Bayesian networks, this approach produces a classifier based, instead of a single,
on a collection of Bayesian networks (with the same topology) or, in other words,
a credal network [6]. If different Bayesian networks associated to the classifier
assign different classes on a same test instance, the classifier returns all these
classes. This is an example of credal classification, comparable with those pro-
posed in [5], being in fact an extension of what we proposed in [1] for the naive
case. To the best of our knowledge, this is the first credal classifier for general
topologies.1 A notable feature of our classifier is that, in the likelihood evalua-
tion, we also consider the test instance with missing value for the class. This is
important to obtain more accurate classification performances when coping with
zero counts. The paper is organised as follows. We review background material
about classification with Bayesian networks (Sect. 2.1) and likelihood-based ap-
proaches (Sect. 2.2). Then, in Sect. 3.1, our approach is presented by means of
a simple example. Discussion on how to cope with zero counts is in Sect. 3.2,
while Sect. 3.3 reports the formula for the classifier. The classifier performances
are empirically tested in Sect. 4. Conclusions and outlooks are finally in Sect. 5.

2 Background

2.1 Classification with Bayesian Networks

Consider a set of variables X := (X0, X1, . . . , Xn), with Xi taking values in a
finite set ΩXi

, for each i = 0, 1, . . . , n. Regard X0 as the class and other vari-
ables as features of a classification task based on a data set of joint observations,

i.e., D := {(x(j)
0 , x

(j)
1 , . . . , x

(j)
n )}Nj=1. A classifier is an algorithm assigning a class

label x∗
0 ∈ ΩX0

to a generic test instance (x̃1, . . . , x̃n) of the features. In par-
ticular, probabilistic classifiers learn from data a joint probability mass function
P (X0, . . . , Xn) and, with 0-1 losses, assign to the test instance the class label:

x∗
0 := arg max

x0∈ΩX0

P (x0|x̃1, . . . , x̃n). (1)

1 Other credal classifiers are based on the imprecise Dirichlet model, but there are no
classification algorithms for general topologies [5].
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The learning of a joint mass function from the data D can be approached within
the framework of Bayesian networks [12]. A Bayesian network induces a compact
specification of the joint based on independencies among its variables. These are
depicted by directed acyclic graphs with nodes in one-to-one correspondence with
the variables in X. Markov condition gives semantics: every variable is condition-
ally independent of its non-descendants non-parents given its parents. Structural
learning algorithms [9, Chap. 18] can learn the graph modeling independencies
in this way. Let G be this graph. For each i = 0, . . . , n, denote by Πi the parents
of Xi according to G. The factorization induced by these independencies is:

P (x0, x1, . . . , xn) =

n∏
i=0

P (xi|πi), (2)

where πi is the value of Πi consistent with (x0, x1, . . . , xn). To do classification,
i.e., to assign a class label as in (1) to the test instance, we check, for each
x′
0, x

′′
0 ∈ ΩX0

, whether or not:

P (x′
0|x̃1, . . . , x̃n)

P (x′′
0 |x̃1, . . . , x̃n)

=
P (x′

0, x̃1, . . . , x̃n)

P (x′′
0 , x̃1, . . . , x̃n)

> 1. (3)

This inequality can be rewritten as:

P (x′
0|π̃0)

P (x′′
0 |π̃0)

·
n∏

i=1

P (x̃i|π̃′
i)

P (x̃i|π̃′′
i )

=
P (x′

0|π̃0)

P (x′′
0 |π̃0)

∏
i=1,...,n:X0∈Πi

P (x̃i|x′
0, π̃i)

P (x̃i|x′′
0 , π̃i)

> 1, (4)

where π̃0 is the value of the parents of X0 consistent with (x̃1, . . . , x̃n); π̃′
i

and π̃′′
i are the values of Πi consistent, respectively, with (x′

0, x̃1, . . . , x̃n) and
(x′′

0 , x̃1, . . . , x̃n) (for each i = 1, . . . , n), and the presence of X0 among the par-
ents of Xi is emphasized in the second product where (with a small abuse of
notation) π̃i denote the state of Πi \{X0} consistent with (x̃1, . . . , x̃n). The first
derivation in (4) follows from (2), the second comes from the fact that the terms
in the products associated to variables Xi which are not children of X0 (nor X0

itself) are one. Hence, when doing classification with Bayesian networks, we can
focus on the Markov blanket of X0 (Fig. 1), i.e., (i) the class X0; (ii) the parents
of X0; (iii) the children of X0; and (iv) the parents of the children of X0.

X0

Fig. 1. A Bayesian network. The nodes of the Markov blanket of X0 are in grey.
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Regarding the quantification of the conditional probabilities in (2) (or, after
the above discussion, only of those in the Markov blanket of X0) from data,
standard techniques can be adopted. For the conditional P (Xi|πi), a Bayesian
approach with Dirichlet prior with parameter sti, for each xi ∈ ΩXi

, would give:

P (xi|πi) :=
n(xi, πi) + sti

n(πi) + s
, (5)

for each i = 1, . . . , n, xi ∈ ΩXi
, πi ∈ ΩΠi

, where n(·) is a count function return-
ing the counts for the data in D satisfying the event specified in its argument.
Similarly, a frequentist (maximum-likelihood) approach would use expression (5)
with s = 0. These approaches are known to produce potentially unreliable esti-
mates if only few data are available, this being particularly true if zero counts
occur. An extension of the frequentist approach to partially overcome these prob-
lems is presented in the next section.

2.2 Likelihood-Based Learning of Imprecise-Probabilistic Models

Likelihood-based approaches [4,11] are an extension of frequentist approaches
intended to learn sets, instead of single, distributions, from data, this making
the corresponding parameters estimates more robust and hence reliable. The
basic idea is to start with a collection of candidate models, and then keep only
those assigning to the available data a probability beyond a certain threshold.
We introduce this with the following example.

Example 1 Consider a Boolean X, for which N observations are available, and
n of them report true. If θ ∈ [0, 1] is the chance that X is true, likelihood of data
is L(θ) := θn · (1 − θ)N−n and its maximum θ∗ = n/N. For each α ∈ [0, 1],
consider the values of θ such that L(θ) ≥ αL(θ∗). Fig. 2 shows the behaviour of
these probability intervals, which can be also regarded as confidence intervals [8],
for increasing values of N .

N

P (X = true)

.65

.6

.55

.5
10007505002500

Fig. 2. Probability intervals obtained by likelihood-based learning for different values
of α for Ex. 1. The plot shows the upper bounds of the interval probability that the
variable is true as a function of the sample size N , when n/N = 1/2 (lower bounds are
symmetric). Black, gray and white points refer, respectively, to α = .8, .5, .15.
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The above technique can be extended to the general case, and interpreted as
a learning procedure [3,10] in the following sense. Consider a credal set P, i.e.,
a collection of probability distributions all over the same variable. Assume the
elements of P are indexed by parameter θ ∈ Θ, i.e., P := {Pθ}θ∈Θ. Given the
data D, consider the normalised likelihood:

L(θ) :=
Pθ(D)

supθ′∈Θ Pθ′(D)
, (6)

likelihood-based learning consists in removing from P the distributions whose
normalised likelihood is below a threshold. Thus, given α ∈ [0, 1], we consider
the (smaller) credal set:

Pα := {Pθ}θ∈Θ:L(θ)≥α. (7)

Note that Pα=1 is a “precise” credal set including only the maximum-likelihood
distribution, while Pα=0 = P. Likelihood-based learning is said to be pure, if
the credal set P includes all the possible distributions that can be specified over
the variable under consideration.

3 Robust Likelihood-Based Classifiers

3.1 A Demonstrative Example

Consider a classification task as in Sect. 2.1 with a single feature and both
variables Boolean. Assuming that X0 → X1 is the graph obtained from the data
(note that this models no independence at all), (2) rewrites as:

P (x0, x1) := P (x1|x0) · P (x0), (8)

for each x0, x1. As a probability mass function over a Boolean variable can
be specified by a single parameter, all Bayesian networks over this graph are
parametrized by θ = (θ1, θ2, θ3) with θ1 := p(x0), θ2 := p(x1|x0), θ3 := p(x1|¬x0).
Let Pθ denote the corresponding joint distribution as in (8). A pure likelihood-
based approach consists in starting from Θ := [0, 1]3 ⊆ R3. The data set D to be
used to refine this credal set can be equivalently characterized by four counts,
i.e., n1 := n(x0, x1), n2 := n(x0,¬x1), n3 := n(¬x0, x1), n4 := (¬x0,¬x1). The
corresponding likelihood, i.e.,

L(θ) ∝ (θ1 · θ2)n1 · (θ1 · (1− θ2))
n2 · ((1− θ1) · θ3)n3 · ((1− θ1) · (1− θ3))

n4 , (9)

attains its maximum when the parameters are estimated by the relative frequen-
cies. For a more robust parameters estimation, given α ∈ [0, 1], all the quantifi-
cations satisfying (7) can be considered. A collection of Bayesian networks (all
over the same graph), i.e., a credal network [6] is therefore considered as a more
robust and reliable model of the process generating the data. This model can be
used for classification. Yet, when evaluating the ratio as in (3), different Pθ can
produce different optimal classes.
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To decide whether or not a class is dominating another one, a possible, con-
servative, approach consists in assuming that a probability dominates another
one if and only if this is true for all the distributions. In practice we extend (3)
to sets of distributions as follows:

inf
Pθ∈Pα

Pθ(x
′
0|x̃1, . . . , x̃n)

Pθ(x′′
0 |x̃1, . . . , x̃n)

> 1. (10)

This is a well-known decision criterion for imprecise-probabilistic models called
maximality [13]. Unlike (3), testing dominance with (10) for each pair of classes
can lead to multiple undominated classes. This produces a credal classifier, which
can assign more than a class to test instances. To check (10), the likelihood should
be evaluated as a function of ratio (3). This can be done by sampling as in Fig. 3.
Yet, different models with different likelihoods can have the same ratio, i.e., the
function is not single-valued. Nevertheless, to check dominance it is sufficient to
determine whether or not the models (points) with ordinate (likelihood) greater
than α all have a ratio (abscissa) greater than one. To do that, it is possible to
focus on the left-most point (α-cut) where the likelihood upper envelope is α.

log
Pθ(x0|x1)
Pθ(¬x0|x1)

α = .15

α = 1

0
dominance threshold

Pθ(x0|x1) = Pθ(¬x0|x1)

left
α-cut

maximum-likelihood

Fig. 3. Likelihood-based classification of a test instance X1 = x1 for model in Sect. 3.1
with [n1, n2, n3, n4] = [2, 2, 1, 3]. Black line is the upper envelope (see Sect. 3.3) and
x-scale logarithmic. On this instance, (10) is not satisfied: x0 does not dominate ¬x0.

3.2 Coping with Zero Counts

In the above described procedure, likelihood was identified with the probability
P (D|θ) assigned by the Bayesian network associated to θ to the data. Yet, if
there is an attribute x̃i in the test instance such that the relative counts are
zero, the corresponding maximum-likelihood probability is zero, this preventing
dominances in (10). Similar problems occur even within the Bayesian framework
[12]. However, the test instance (x̃1, . . . , x̃n) has also been observed: it is an
incomplete datum with class X0 missing. Therefore, as in a semi-supervised
setting, it could be involved in the likelihood evaluation as well, i.e.,

L′(θ) ∝ P (D|θ) ·
∑

x0∈ΩX0

Pθ(x0, x̃1, . . . , x̃n). (11)
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Besides being more correct, this also prevents the above issue with zero counts.
The maximum-likelihood estimate of θ can be calculated with the EM algorithm,
which completes the test instance with fractional counts for the different values of
X0. We denote by n̂(·) the counting function obtained by augmenting the counts
about D with these fractional counts. Note that, while n() = N , n̂() = N + 1.

3.3 Analytic Formulae for the Upper Envelope of the Likelihood

Following the approach in Sect. 3.1 we derive here an analytic expression for the
upper envelope of the likelihood (11) as a function of the probability ratio (3).
Each point of this upper envelope corresponds to a particular quantification Pθ

of the Bayesian network. If θ(t) is a function of t ∈ [a, b] such that there is a
one-to-one correspondence between the quantifications Pθ(t) and the points of
the upper envelope of the likelihood (when t varies in [a, b]), then{(

Pθ(t)(x
′
0, x̃1, . . . , x̃n)

Pθ(t)(x
′′
0 , x̃1, . . . , x̃n)

, L′ (θ(t))

)
: t ∈ [a, b]

}
(12)

is a parametric expression for the graph of the upper envelope.
A function θ(t) with the above property was obtained in [4] for the case

without summation in (11), i.e., without considering the test instance in the
likelihood. This result is not directly applicable to the likelihood (11), but we
can obtain an approximation of the desired upper envelope if we use the function
θ̂(t) resulting from the expected likelihood delivered by the EM-algorithm, i.e.,
the likelihood corresponding to the augmented counts n̂(·). Our approximation
is then given by (12) with θ̂(t) instead of θ(t).

To simplify the analytic formulae, we assume that the children of X0 in the
Bayesian network are denoted by X1, . . . , Xk (with k ≤ n). We first define:

a := −min {n̂(x′
0, π̃0), n̂(x̃1, x

′
0, π̃1), . . . , n̂(x̃k, x

′
0, π̃k)} , (13)

b := min {n̂(x′′
0 , π̃0), n̂(x̃1, x

′′
0 , π̃1), . . . , n̂(x̃k, x

′′
0 , π̃k)} . (14)

For each t ∈ [a, b], let us consider the following functions:

x(t) :=
n̂(x′

0, π̃0) + t

n̂(x′′
0 , π̃0)− t

·
k∏

i=1

n̂(x̃i,x
′
0,π̃i)+t

n̂(x′
0,π̃i)+t

n̂(x̃i,x′′
0 ,π̃i)−t

n̂(x′′
0 ,π̃i)−t

, (15)

y(t) := y0(t) ·

 ∑
x0∈ΩX0

kx0
(t)

 , (16)

where:

y0(t) := [n̂(x′
0, π̃0) + t]

n(x′
0,π̃0) · [n̂(x′′

0 , π̃0)− t]
n(x′′

0 ,π̃0)

·
k∏

i=1

[
[n̂(x̃i, x

′
0, π̃i) + t]

n(x̃i,x
′
0,π̃i)

[n̂(x′
0, π̃i) + t]

n(x′
0,π̃i)

· [n̂(x̃i, x
′′
0 , π̃i)− t]

n(x̃i,x
′′
0 ,π̃i)

[n̂(x′′
0 , π̃i)− t]

n(x′′
0 ,π̃i)

]
,(17)
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kx0(t) :=


[n̂(x0, π̃0) + t] ·

∏k
i=1

n̂(x̃i,x0,π̃i)+t
n̂(x0,π̃i)+t if x0 = x′

0,

[n̂(x0, π̃0)− t] ·
∏k

i=1
n̂(x̃i,x0,π̃i)−t
n̂(x0,π̃i)−t if x0 = x′′

0 ,

n̂(x0, π̃0) ·
∏k

i=1
n̂(x̃i,x0,π̃i)
n̂(x0,π̃i)

if x0 ∈ ΩX0 \ {x′
0, x

′′
0}.
(18)

Theorem 1. If [x(a), x(b)] = [0,+∞], our approximation of the upper envelope
of the normalized likelihood (11) as a function of the probability ratio (3) is
parametrized by (x(t), y(t)/y(0)) with t ∈ [a, b].

Theorem 2. If x(a) > 0, the parametrization in Th. 1 holds in the region
[x(a), x(b)], while in the region [0, x(a)], a parametrization is (τ · x(a), y′(τ)/y(0))
with τ ∈ [0, 1] and:

y′(τ) := τ−a+n(x′
0)−n̂(x′

0) · y0(a) ·

τ kx′
0
(a) +

∑
x0∈ΩX0

\{x′
0}

kx0(a)

 . (19)

The proofs of the two theorems are omitted for lack of space, but can be found
in [2]. As a simple application of these results, it is straightforward to evaluate
the upper envelope of the likelihood for the example in Fig. 3 when only the
complete data are considered in the likelihood, i.e., only y0(t) is considered in
(17). In this case, t ∈ [−2, 1] and:[

x(t)
y(t)

]
=

[
(2 + t) · (1− t)−1

(2 + t)2 · (1− t)

]
. (20)

Given the above parametrization of the likelihood upper envelope, classification
can be performed by checking whether or not the left α-cut has abscissa greater
than one. For the situation in Th. 1, this can be numerically done in few iteration
by bracketing the (unique) zero of g(t) := y(t) − αy(0) in the region t ∈ [a, 0],
unless the corresponding bounds on x(t) are greater (or smaller) than one (and
similarly proceed for Th. 2).

4 Preliminary Results

To describe the performance of a credal classifier, multiple indicators are needed.
We adopt the following:

– determinacy : percentage of instances classified with a single class;

– single accuracy : accuracy over instances classified with a single class;

– set-accuracy : accuracy over instances classified with more classes;

– indeterminate output size: average number of classes returned when the clas-
sification is indeterminate.
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Roughly speaking, a credal classifier identifies easy instances, over which it re-
turns a single class, and hard instances, over which it returns more classes. A
credal classifier is effective at recognizing hard instances if its precise counterpart
undergoes a considerable drop of accuracy on them. As a precise counterpart of
the likelihood-based credal classifier we consider a Bayesian network with the
same graph, but whose parameters are learned precisely as in (5); this model is
referred to as the standard network in the following. The graph is learned using
the K2 score [9, Chap. 18]. The considered data sets and their main character-
istics are shown in Tab. 1. We run 5 runs of 5 folds cross-validation, for a total
of 25 training/test experiments on each data set.

Table 1. Main characteristics of the data sets.

Dataset Iris Glass Ecoli Breast Haberman Diabetes Ionosphere

Size N 150 214 336 699 306 768 351
Features k 4 7 6 9 2 6 33
Classes |ΩX0 | 3 7 8 2 2 2 2

The determinacy of the likelihood-based classifier (with α = 0.15) is generally
around 90% or higher, as shown in the left plot of Fig. 4; in general, the deter-
minacy increases on larger data sets. The likelihood-based classifier is effective
at detecting hard instances; this can be appreciated by the right plot of Fig. 4,
which compares the accuracy obtained by the standard network on the instances
recognized as easy and hard by the likelihood-based classifier. The accuracy of
the standard network clearly drops on the instances indeterminately classified by
the likelihood-based model; the drop is statistically significant (Wilcoxon signed-
rank test, p-value < 0.01). The set-accuracy and the indeterminate output size
are meaningful only on data sets with more than 2 classes. On such data sets,
the likelihood-based classifier returns a number of classes which is on average
58% of the total classes, achieving on average a set-accuracy of 84%.

In future more extensive experiments should be carried out, comparing the
likelihood-based model against credal classifiers already present in literature.

5 Conclusions and Outlooks

A new, likelihood-based approach, to classification with Bayesian networks has
been proposed. Instead of the single maximum-likelihood estimation of the net-
work parameters, all the parametrizations assigning to the available data a likeli-
hood beyond a given threshold are considered. All the classes which are optimal
at least for a network parametrization consistent with this constraint are re-
turned. This corresponds to a credal classifier which can eventually assign more
than a single class label to the test instance. Preliminary experiments show
that this approach is successful in discriminating hard- from easy-to-classify in-
stances. In the latter case the single, correct, class label is returned, while for
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Fig. 4. Experimental results: determinacy of the likelihood-based classifier (left) and
comparison of the accuracy achieved by the standard network on the instances classified
determinately and indeterminately by the likelihood-based classifier (right) .

hard instances a set of classes, generally including the correct one, is returned.
As a future work, we intend to compare this model with other credal classifiers
and extend this approach to incomplete data sets.
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