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Introduction

Probability theory is that part of mathematics that is concerned with the description and
modeling of random phenomena, or in a more general — but not unanimously accepted — sense,
of any kind of uncertainty. Probability is assigned to random events, expressing their tendency
to occur in a random experiment, or more generally to propositions, characterizing the degree of
belief in their truth.

Probability is the fundamental concept underlying most statistical analyses that go beyond a
mere description of the observed data. In statistical inference, where conclusions from a random
sample have to be drawn about the properties of the underlying population, arguments based on
probability allow to cope with the sampling error and therefore control the inference error, which
is necessarily present in any generalization from a part to the whole. Statistical modeling aims at
separating regularities (structure explainable by a model) from randomness. There, the sampling
error and all the variation that is not explained by the chosen optimal model are comprised in an
error probability as a residual category.

Different Interpretations and Their Consequences for Statistical Inference

The concept of probability has a very long history (see for instance Vallverdd, 2011). Orig-
inally, the term had a more philosophical meaning, describing the degree of certainty or the
persuasive power of an argument. The beginnings of a more mathematical treatment of prob-
ability are related to considerations of symmetry in games of chance (see for example Hald,
2003). The scope of the theory was extended by Bernoulli (1713), who applied similar symme-
try considerations in the study of epistemic probability in civil, moral, and economic problems.
In this connection, he proved his “law of large numbers,” which can be seen as the first theorem
of mathematical statistics, and as a cornerstone of the frequentist interpretation of probability,
which understands the probability of an event as the limit of its relative frequency in an infi-
nite sequence of independent repetitions of a random experiment. Typically, the frequentist (or
aleatoric) point of view is objectivist in the sense that it relates probability to random phenomena
only and perceives probability as a property of the random experiment (e.g. rolling a dice) under
consideration.
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In contrast, the second of the two most common interpretations (see for instance Peterson,
2011, for more details), the subjective, personalistic, or epistemic viewpoint, perceives probabil-
ity as a property of the subject confronted with uncertainty. Consequently, here probability can
be assigned to anything the very subject is uncertain about, and the question of whether or not
there is an underlying random process vanishes. For the interpretation, in the tradition of Savage
(1954) a fictive scenario is used where preferences between actions are described. In particular,
the probability of an event is understood as the price at which the subject is indifferent between
buying and selling a security paying 1 when the event occurs (and O otherwise).

The interpretation of probability predetermines to a considerable extent the choice of the sta-
tistical inference methods to learn the unknown parameters ¢ of a statistical model from the data.
The frequentist perceives ¢ as an unknown but fixed quantity and seeks methods that are opti-
mal under fictive infinite repetitions of the statistical experiment, while for the subjectivist it is
straightforward to express her/his uncertainty about ¢ by a (prior) probability distribution, which
is then, in the light of new data, updated by the so-called Bayes’ rule to obtain the (posterior)
probability distribution describing all her/his knowledge about @ (Bayesian inference).

Kolmorgorov’s Axioms

While the interpretation of probability is quite important for statistical applications, the math-
ematical theory of probability can be developed almost independently of the interpretation of
probability. The foundations of the modern theory of probability were laid by Kolmogorov
(1933) in measure theory: probability is axiomatized as a normalized measure.

More specifically (see for instance Merkle, 2011, and Rudas, 2011, for more details), let Q be
the set of elementary events under consideration (Q2 is usually called sample space). The events
of interest are described as sets of elementary events: it is assumed that they build a o-algebra A
of subsets of Q (i.e., A € P () is nonempty and closed under complementation and countable
union). A probability measure on (€, A) is a function P : A — [0, 1] such that P () = 1 and

n n=1

=1

for all sequences of pairwise disjoint events E, E,, ... € A. When Q is uncountable, a Borel o-
algebra is usually selected as the set A of events of interest, because the natural choice A = P (Q)
would place too strong limitations on the probability measure P, at least under the axiom of
choice (see for example Solovay, 1970).

Kolmogorov supplemented his axioms by two further basic definitions: the definition of in-
dependence of events and the definition of conditional probability P(A|B) (that is, the probability
of event A given an event B).

From the axioms, fundamental theorems with a strong impact on statistics have been derived
on the behavior of independent repetitions of a random experiment (see for instance Billingsley,
1995, and Schervish, 1995, for more details). They include different laws of large numbers (see
above), the central limit theorem, distinguishing the Gaussian distribution as a standard distribu-
tion for analyzing large samples, and the Glivenko—Cantelli theorem, formulating convergence of
the so-called empirical distribution function to its theoretical counterpart, which means, loosely
speaking, that the true probability distribution can be rediscovered in a large sample and thus can
be learned from data.



Current Discussion and Challenges

In statistical methodology, for a long time Kolmogorov’s measure-theoretic axiomatization
of probability theory remained almost undisputed: only countable additivity (1) was criticized
by some proponents of the subjective interpretation of probability, such as De Finetti (1974—
1975). If countable additivity is replaced by the weaker assumption of finite additivity (i.e.,
P(E| U E;) = P(E|)+P (E,) for all pairs of disjoint events E|, E, € A), then it is always possible
to assign a probability to any set of elementary events (that is, the natural choice A = P () does
not pose problems anymore). However, without countable additivity many mathematical results
of measure theory are not valid anymore.

In recent years, the traditional concept of probability has been questioned in a more fun-
damental way, especially from the subjectivist point of view. On the basis of severe problems
encountered when trying to model uncertain expert knowledge in artificial intelligence, the role
of probability as the exclusive methodology for handling uncertainty has been rejected (see for
example the introduction of Klir and Wierman, 1999). It is argued that traditional probability
is only a one-dimensional, too reductionistic view on the multidimensional phenomenon of un-
certainty. Similar conclusions (see for instance Hsu et al., 2005) have been drawn in economic
decision theory following Ellsberg’s seminal experiments (Ellsberg, 1961), where the extent of
ambiguity (or non-stochastic uncertainty) has been distinguished as a constitutive component of
decision making.

Such insights have been the driving force for the development of the theory of imprecise
probability (see for example Coolen et al., 2011, for a brief survey), comprising approaches that
formalize the probability of an event A as an interval [P(A), P(A)], with the difference between
P(A) and P(A) expressing the extent of ambiguity. Here, P and P are non-additive set-functions,
often called lower and upper probabilities. In particular, Walley (1991) has partially extended
De Finetti’s framework (De Finetti, 1974-1975) to a behavioral theory of imprecise probabil-
ity, based on an interpretation of probability as possibly differing buying and selling prices,
while Weichselberger (2001) has developed a theory of interval-probability by generalizing Kol-
mogorov’s axioms.
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