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10 Abstract

11 Swift performance assessment of dehumidification systems, in design stage and while 

12 operation of the system is of substantial importance for commercialization and wide 

13 implementation of this technology. This paper presents a novel statistical model, employing 

14 Gaussian Process Regression (GPR) to investigate performance of a solar/waste energy driven 

15 dehumidification/regeneration cycle with a solid adsorbent bed. The statistical model takes 

16 thousands of operating conditions derived from a numerical model to predict the performance 

17 of the system. This predictive tool directly correlates the main operating parameters with the 

18 performance parameters of the system. The operating parameters considered in this study are: 

19 temperature, relative humidity and flow rate of process air, temperature of regeneration air, 

20 length of the desiccant bed, solar radiation intensity and operating time, and the selected 

21 performance parameters are: moisture extraction efficiency for the dehumidification cycle and 

22 moisture removal efficiency for the regeneration cycle. The model is evaluated by three metrics, 

23 namely: root mean square error (RSME), mean absolute percentage error (MAPE), and 

24 coefficient of determination (R2). The maximum RSME and MAPE for moisture extraction are 

25 only 0.045, 0.21%, and for moisture removal efficiencies are 0.082 and 0.39%, respectively, 

26 while the R2 value is derived as 0.97. The developed model is used to investigate the impact of 

27 four selected operating parameters on system performance. Additionally, the system 
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28 performance is predicted for randomly generated operating conditions as well as warm and 

29 humid climates. The developed GPR model provides a swift and highly accurate predictive 

30 tool for design of the dehumidification systems and for commercialization of the investigated 

31 dehumidification systems.

32 Keywords: Gaussian process regression, operating parameters, performance parameters, 

33 dehumidification, regeneration. 

34

Nomenclature p Process air

d                  Humidity ratio (kg water vapor/kg of dry air) out Outlet

W          Water content, (kg adsorbate/kg adsorbent) i Initial

cp Specific heat capacity, kJ/kg K in         Inlet

A Cross-sectional area, m2 d Desiccant

C Perimeter of air flow passage, m me Moisture extraction

T                  Temperature, °C mr Moisture removal 

RH               Relative humidity                                          r Regeneration

u                 Air velocity, (m/s)                                          v Vapour

Ds surface diffusivity, m2/s t Training

D0 Ordinary diffusivity, m2/s d Desiccant

DG Gas phase diffusivity, m2/s Greek symbols

L Bed length, m α Heat transfer coefficient, kW/m2K

X Dependent variable ρ Density, kg/m3

K Thermal conductivity, W/m K η Efficiency

Sh Sherwood number Ɵ Measurement error
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35

36 1. Introduction

37 Air with a relative humidity (RH) between 40% and 60% is the most convenient indoor air 

38 [1]. Due to high energy consumption and low COP (2-4) of conventional mechanical 

39 vapour compression refrigeration air conditioning systems [2], energy efficient desiccant 

40 cooling and air-conditioning systems have attracted more attention in past decades [3]. 

41 Numerous research has suggested that the desiccant cooling and air-conditioning systems 

42 with solid or liquid desiccants are the potential substitutes to electrically driven vapour 

43 compression cooling systems [4-6]. 

44 Desiccant systems have been investigated by a number of experimental and numerical 

45 studies. Through experimental studies, Chen et al. [7] presented a novel polymer hollow 

46 fibre liquid desiccant dehumidification system with latent effectiveness of 0.25-0.43 and 

47 the sensible effectiveness of 0.31-0.52. Cho et al. [8] conducted a series of experiments and 

Ky Coefficient of mass convection, kg/m2s ε Porosity

y Independent variable Ɵ Length-scale

N Number of operating conditions β Model coefficient

F Volume ratio Ɵ Volume ratio of desiccant, %

I Solar radiation intensity, W/m2 σ2
f Signal variance

T Time, s Abbreviations

th Hourly operating time, hr GPR Gaussian process regression

Nu Nusselt number RMSE Root mean square error

z Air flow direction MAPE Mean absolute percentage error

Subscripts

A Air
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48 found that the cross-flow liquid desiccant dehumidifier has stable dehumidification 

49 performance regardless of the variations in operating parameters, but the cross-flow 

50 dehumidifier performance is effected by temperature and humid process air conditions. Bai 

51 et al. [9] experimentally investigated the performance of the membrane-based liquid 

52 desiccant dehumidification system with calcium chloride. The sensible, latent and total 

53 effectiveness in their study were recorded as 0.49, 0.55, and 0.53, respectively. Yang et al. 

54 [10] studied a novel solar solid dehumidification and regeneration bed with three 

55 regeneration methods. The results showed that the combined regeneration methods i.e., 

56 simulated solar radiation regeneration, microwave regeneration, and combined 

57 regeneration of the microwave and simulated solar radiation had higher regeneration 

58 efficiencies.

59 Among the numerical studies, Su et al [11] presented a two-stage liquid-desiccant 

60 dehumidification system with 30.63% lower power consumption compared to the 

61 conventional systems.  Park et al. [12] compared a liquid desiccant and evaporative cooling-

62 assisted system to a single stage one and found that the primary energy consumption is 17.4% 

63 lower while thermal and primary coefficients are 41% and 20% higher in the liquid 

64 desiccant and evaporative cooling-assisted system.  Guo et al. [13] performed a hybrid 

65 method combining the electrodialysis and thermal regeneration method for liquid desiccant 

66 dehumidification and found electrodialysis accounted for 85% of the total energy 

67 consumption of liquid desiccant regeneration. Song et al. [14] detected the hidden 

68 relationship between the heating and cooling sources and the air states. Ali et al [15] 

69 simulated different components of a liquid desiccant based dehumidification system for 

70 greenhouse cultivation. The model is found out to be effective in removing the moisture 

71 created by the crops inside the greenhouse. Das and Jai [16] developed a model for liquid 
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72 desiccant dehumidification applications in which the maximum deviations of ±20% was 

73 observed.  

74 Study of literature revealed that the current numerical and experimental data are limited to 

75 the narrow data scales. Such limitation obstructs implementation of solar/waste energy 

76 driven dehumidification/regeneration cycle in real-life scenarios where multiple parameters 

77 vary simultaneously. The substantially high cost of constructing the experimental rigs for 

78 testing and analysis of these systems brings up further obstacles in exploring the system. 

79 Numerical models are one alternative to experimental studies. However, despite being cost 

80 effective, numerical models often require extensive input parameters and complicated 

81 equations to be solved which are extremely time consuming.

82 Therefore, to overcome the above-mentioned issues, a number of studies have proposed 

83 statistical methods. The comparative summary of these literatures and their achievements 

84 are listed in Table 1. 

85 Detailed investigation of the literature revealed a research gap in utilizing full capacities of 

86 statistical modelling to predict performance of dehumidification systems by considering 

87 the commercialization of the this technology. Lack of a swift, accurate and easily done 

88 predictive tool, which can directly correlate the main parameters of this technology and 

89 predict the efficiencies of the system based on main parameters only, was an essence need. 

90 This paper pioneers in bringing the Gaussian Process Regression (GPR), which has been 

91 applied to a wide range of fields [17-25], as a predictive tool to investigate the performance 

92 of a solar/waste energy driven dehumidification/regeneration cycle, as well as, to introduce 

93 a new application for GPR. This, to the authors’ knowledge, is the first statistical modelling 

94 study that applies GPR to investigate the performance of dehumidification systems. The 

95 developed GPR model directly correlates the main operating parameters i.e. temperature, 

96 relative humidity and flow rate of process air, temperature of regeneration air, length of the 
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97 desiccant bed, solar radiation intensity and operating time with performance parameters i.e. 

98 moisture extraction efficiency for the dehumidification cycle and moisture removal 

99 efficiency for the regeneration cycle.

100 In section 2, solar/waste energy driven dehumidification/regeneration cycle, GPR 

101 methodology and dataset development are explained. Then the model results including 

102 verification and applications are given in section 3. Eventually, the conclusion is presented 

103 in section 4.

104 Table1. Summary of related studies

Study System Method Remarks

Park et al [26] Liquid desiccant  system Response Surface 

Methodology (RSM)

A model was derived based on the operating 

parameters that significantly affected the 

dehumidification effectiveness.

Ou et al. [27] Liquid desiccant cooling and 

dehumidification system

Effectiveness-NTU, 

Levenberg–Marquardt 

and unscented Kalman 

filter algorithm

Experimental tests on a pilot plant revealed 

that the model can accurately predict the 

system performance under different operating 

conditions.

Gandhidasan 

and Mohandes 

[28]

Liquid desiccant dehumidification Artificial Neural 

Network (ANN)

This study showed that the ANN can be used 

as a predictive tool with a reasonable degree of 

accuracy.

Jani et al [29] Rotary desiccant dehumidifier Artificial Neural 

Network (ANN)

Performance predictions through ANN are 

compared with the experiments and a close 

agreement is observed.

Current study A solar/waste energy driven 

dehumidification/regeneration cycle 

with a solid adsorbent bed

Gaussian Process 

Regression (GPR)

The developed GPR model provides a swift 

and highly accurate predictive tool for design 

of the dehumidification systems and for 

commercialization of the investigated 

dehumidification systems.

105

106 2. Methods

107 2.1. Description of a dehumidification system
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108 Schematic of the solar/waste energy driven dehumidification/regeneration cycle to be 

109 investigated in this study is shown in Figure 1. A desiccant bed is located inside a 

110 channel that is constructed by a porous and visible-light LiCl-Sillicon-Gels material 

111 [2]. The bed specifications such as its dimensions and material play a key role in 

112 performance of both dehumidification and regeneration cycles. In the dehumidification 

113 process, the humid air (also called as process air), flows inside the channel and passes 

114 through the bed. The moisture of the process air is absorbed by the absorbent material 

115 in the desiccant bed owing to the partial vapour pressure difference between the solid 

116 absorbent surface of the bed and the process air. By flowing the process air through the 

117 desiccant bed, the absorbent material will gradually reach its saturation state. The 

118 regeneration process starts to regenerate the saturated absorbent material for the next 

119 dehumidification cycle. During the regeneration process, either a high temperature 

120 regeneration air with a temperature more than 70ƟC or a low temperature regeneration 

121 air heated with the solar radiation passes through the saturated absorbent. As the 

122 regeneration air passes through the channel, the heat is transferred from the regeneration 

123 air to the water inside the absorbent voids and evaporates water. Eventually, the 

124 regeneration air transports the evaporated water out of system and the regenerated 

125 absorbent is ready for another dehumidification cycle. When the solar radiation is not 

126 available, the regeneration air is initially heated by an available waste heat. 

127

128

129

130
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131 (a)

132 (b)

133 Figure 1. Solar/waste energy driven dehumidification and regeneration cycle

134

135 The system’s performance is identified by two main parameters: moisture extraction 

136 efficiency and moisture removal efficiency. Moisture extraction efficiency is the ratio 

137 of difference in inlet and outlet moisture content of process air to inlet moisture content 

138 of process air [2]:

139                                                                                                                   (1)ηme =  
dp,in ‒ dp,out

dp,in

140 where  is moisture content of inlet air and  is the moisture content of outlet dp,in dp,out

141 air.
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142 And the moisture removal efficiency for the regeneration cycle is ratio of difference in 

143 initial and final water content to initial water content of desiccant:

144                                                                                                                           (2)                                                                                                 ηmr =  
W𝑖 ‒ W

W𝑖

145 where   is initial water content of desiccant and W is the final water content of W𝑖

146 desiccant.

147 2.2. Statistical Model: Gaussian process regression 

148 Gaussian process regression (GPR) is a vigorous predictive tool which is capable of 

149 providing a predictive posterior distribution of outputs. This is a distinctive feature of 

150 GPR compared to the general regression models, such as linear or polynomial 

151 regressions which only estimate the value of the outputs. The GPR predicts the posterior 

152 probability distribution by a prior probability and then updates the prior probability 

153 distribution by training set. This means that the posterior distribution includes the full 

154 information of the prediction such as confidence level and prediction mean. A detailed 

155 description of the GPR has been presented in [30]. The main advantage of the Gaussian 

156 regression process is the way it defines the model. The GPR determines the structure 

157 of the covariance matrix of the independent variables as backbone of the model, while 

158 other regression techniques use the algebraic relationships of the independent and 

159 dependent variables [31].

160 For any training set as {D= (xi , yi ) ; i= 1,2,3, … n} where xi ∊ ℝd and yi ∊ ℝ. The 

161 Gaussian process is a prior over a function, f, based on the Bayesian theorem: 

162                                                                                            (3)p ( 𝑓 | D ) =  
𝑝 (𝑓) 𝑝 ( 𝐷 | 𝑓 ) 

𝑝 ( 𝐷 )  

163 The general regression model is given as: 

164                                                                                                                                 (4)𝑦 = 𝑥𝑇𝛽 +  𝜀
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165 Where β is a regression coefficient calculated from the training data and ε ~ N(0, σ2). 

166 The error variance σ2 is also calculated using the training data. Simply for a Gaussian 

167 process with n observations, {xi; i= 1,2,3, … n, xi ∊ ℝd} and corresponding function 

168 variables, { f(xi) ; i= 1,2,3, … n}, the joint (zero mean) Gaussian observation is:

169                                                                                             (5)p ( 𝑓(𝑥) | x ) = N ( 0, 𝜎2) 

170 The Gaussian process describes the distribution over functions and it needs a covariance 

171 or kernel function and mean function to be fully specified. 

172                                                                                                        (6)𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥,𝑥))

173 The covariance function, defines the degree of correlation between the outputs of two 

174 input sets (x and ), and is the backbone of the relationships between input variables. 𝑥

175 The mean covariance and the kernel functions can be defined as equations 7 and 8, 

176 respectively:

177                                                                                                    (7)𝑚(𝑥) = 𝐸 [ 𝑓(𝑥) ]

178                              (8)𝐶𝑜𝑣 [ 𝑓(𝑥), 𝑓(𝑥)] = 𝑘(𝑥,𝑥) = 𝐸 [ (𝑓(𝑋) ‒ 𝑚(𝑥))(𝑓(𝑥) ‒ 𝑚(𝑥)) ]

179 Selection of the proper kernel function is important as estimation of the posterior 

180 distribution is significantly influenced by the prior distribution. An appropriate kernel 

181 is chosen on basis of the assumptions such as smoothness and likely patterns to be 

182 expected in the data. There are a number of different kernel functions such as: Matern, 

183 exponential, power-exponential, linear, intersection exist. In this study, one common 

184 kernel function, radial basis kernel function is used:

185                                                                          (9)𝑘(𝑥,𝑥) = 𝜎2
𝑓exp [ ‒ ∑𝑖 = 𝑛

𝑖 = 1

‖𝑥(𝑖) ‒ 𝑥(𝑖)‖2

2Ɵ(𝑖)2 ]

186 Where  is the signal variance and Ɵ is the length-scale. Once the prior kernel and 𝜎2
𝑓

187 mean functions are chosen, the GPR can be implemented to update the kernel and mean 
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188 functions using the observed new dependent variable, , for the given new independent 𝑦

189 variable, , by a new function,  , to obtain the posterior estimation function as below:𝑥 𝑓

190                                                          (10)p ([ 
𝑓
𝑓 ]) = 𝑁 (0 , [𝐾(𝑥,𝑥) + 𝜎2I 𝐾(𝑥,𝑥)

𝐾(𝑥,𝑥) 𝐾(𝑥,𝑥)])     

191                                                                        (11)m ( 𝑓 ) =  𝐾(𝑥,𝑥) ( 𝐾(𝑥,𝑥) + 𝜎2I ) ‒ 1𝑓

192                                       (12)𝐶𝑜𝑣 [ 𝑓 ] =  𝐾(𝑥,𝑥) ‒  𝐾(𝑥,𝑥)( 𝐾(𝑥,𝑥) + 𝜎2I ) ‒ 1 𝐾(𝑥,𝑥)

193 The posterior distribution is only Gaussian subject to the hyperparameters. It means 

194 that all of the kernel function parameters are assumed to be constant. In this study, the 

195 GPR analysis is carried out in R programing language 3.5.1 using the DiceKriging 

196 package. The detailed information about the DiceKriging package can be found in [32].     

197 2.3. Numerical model

198 The numerical model used for data collection and GPR model testing, is based on 

199 energy and mass balance equations for two specified control volumes i.e.: flowing air 

200 and desiccant bed particles. A number of assumptions had to be made in order to 

201 simplify the calculations such as: the heat and mass transfer is a one dimensional; heat 

202 conduction in flow direction is ignored; heat and mass transfer coefficients between air 

203 and desiccant are assumed to be constant; the solar radiation in regeneration process is 

204 uniform; the heat and mass transfer coefficients between the air and the desiccant are 

205 constant and; any air state change at inlet and outlet of the system is ignored. 

206 The dehumidification system operation is modelled by the following equations which 

207 are solved using finite element method in Matlab [2]. The mass balance for the flowing 

208 air stream is given as:

209                                                                         (13)ρafA(∂da

∂t  + u 
∂da

∂z ) =  KyC(dd ‒ da)
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210 Where,  is density of the air,  is volume ratio of the air space to the whole channel, ρa f

211  is the Cross-sectional area of the channel,  and  are absolute humidity ratios of A da dd

212 the air and desiccant respectively,  is flow rate,  is Coefficient of mass convection, u Ky 

213  is the perimeter of air flow passage,  is time and z indicates the flow direction.C t

214 The mass balance within the absorbent bed is given as:

215 ρaε(1 ‒ f)A
∂dd

∂t +  ρd(1 ‒ ε)(1 ‒ f)Aϕ
∂W
∂t

216                  (14)=  ρaε(1 ‒ f)A DG
∂2dd

∂z2 +  ρdε(1 ‒ ε)(1 ‒ f)ADs
∂2W

∂z2 +  KyC(da ‒ dd) 

217 Where  is porosity,  is density of desiccant,  is Volume ratio of desiccant,   is ε ρd ϕ W

218 dry base water content,  is gas phase diffusivity and  is surface diffusivity. DG Ds

219 The energy balance within the flowing air stream is given as:

220  (15)ρa(cp,a ‒ dacp,v)fA(∂Ta

∂t  + u 
∂Ta

∂z ) =  αC(Ta ‒ Td) +  Kycp,vC(dd ‒ da) (Ta ‒ Td) 

221 Where,  and  are specific heat capacities of air and water vapour respectively,  cp,a cp,v α

222 is convective heat transfer coefficient,  and  are the temperature of the air and Ta Td

223 desiccant bed respectively.

224 The energy balance within the absorbent bed is given as:

225 ρdcp,d(1 ‒ f)A(1 ‒ ε)(∂Td

∂t ‒  
kd

cpρd

∂2Td

∂z2 )
226             (16)=  αC(Ta ‒ Td) +  Kycp,vC(dd ‒ da)(Ta ‒ Td) +  KyC(dd ‒ da)qs + I.A/l 

227 Where,   is specific heat capacity of desiccant bed,  is thermal conductivity of cp,d kd

228 desiccant,  is solar radiation intensity and  is the thickness of the absorbent bed.I l
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229 The initial temperature of flowing air and desiccant are constant and identical to the 

230 initial temperature of inlet air and, the corresponding humidity ratios are also assumed 

231 to get the humidity ratio of the inlet air. The initial water content of desiccant is assumed 

232 to be 0.015 [kg/kg]. The boundary temperature and humidity ratios at inlet for 

233 dehumidification and regeneration process are assumed constant for every time step. 

234 Moreover, the temperature and moisture content gradient at desiccant boundaries are 

235 zero.

236 The heat transfer coefficient is given as:

237                                                                                                              (17)α =  
(Nu)(k)(C)

4A

238 Where  is nusselt number,  is thermal conductivity. The mass transfer coefficient Nu k

239 is presented as:

240                                                                                                            (18)Ky =  ρa
(Sh)D0C

4A

241 Where  is Sherwood number and  is Ordinary diffusivity.𝑆ℎ 𝐷0

242 2.4. Model evaluation

243 Three common metrics are used to evaluate the prediction accuracy of the GPR model: 

244 RMSE (root mean square error), MAPE (mean absolute percentage error) and R2 

245 (coefficient of determination). Generally, RMSE measures deviation between the actual 

246 values and predicted values of the dependent variables, MAPE, is used to indicate the 

247 accuracy of the model for small changes in data and R2 is selected to measure the quality 

248 of the model by measuring the proportion of the total variations. These metrics are 

249 defined as:

250                                                                                      (19)RMSE =
1
N∑N

i = 1(yi ‒ ypi)
2
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251                                                                                 (20)MAPE =
1
N |∑N

i = 1(yi ‒ ypi)

∑N
i = 1yi

| ×  100

252                                                                                                 (21)R2 = 1 ‒
∑N

i = 1(yi ‒ ypi)
2

∑N
i = 1(yi ‒ y)2

253 Where N represents the number of observations,  and  are the actual and predicted yi ypi

254 values of the dependent variables, and  is the mean value of the actual measured y

255 dependent variables in training set.

256 2.5. Dataset development
257
258 A comprehensive dataset comprising the selected key operating parameters, and 

259 corresponding performance parameters is generated using the numerical model. It is 

260 vital to mention that the operating parameters in current dehumidification system 

261 represent the input data for statistical model. In this study, seven main operating 

262 parameters (input data) and two performance parameters, based on a two-dimensional 

263 numerical and an experimental models [2, 10], were selected. Temperature, relative 

264 humidity and flow rate of process air, temperature of regeneration air, length of the 

265 desiccant bed, solar radiation intensity and operating time are operating parameters; and 

266 moisture extraction efficiency as the performance factor of dehumidification process 

267 and moisture removal efficiency as the performance factor of regeneration process are 

268 the selected performance parameters. To concentrate the model on real operating 

269 conditions of the system, and to avoid unrealistic operating conditions, suitable ranges 

270 for each operating parameters are determined by a meticulous investigation of real 

271 operating conditions in numerical and experimental literatures as listed in Table 2 [2, 

272 10]. Flow rate and relative humidity of the air stream in both cycles are considered to 

273 be same [2].
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274 Table 2. Operating parameters and corresponding operation ranges

275

276

277 The comprehensive dataset is divided into two parts: 1) training set, and 2) testing set. 

278 Training set is used to train and develop the model, and testing set is used to test the 

279 developed GPR model. Discrete values of operating parameters are needed to generate 

280 the comprehensive dataset. The values are randomly chosen to construct the datasets 

281 only, and validity of the model is not limited to these values. Having identified the 

282 discrete values, as listed in Table 3, all possible combinations of the discrete values are 

283 created to introduce all possible operating conditions of the system to the GPR model. 

284 Figure 2 illustrates three operating conditions out of n (6480) possible conditions in 

285 which 4320 are taken as training set and 2160 of them are specified as testing set. To 

286 build the dependent part of the datasets, performance parameters for each created 

287 operating conditions were calculated through the numerical model [2]. 

288

289 Table 3. Discrete values of operating parameters

Operating parameters Ranges

Temperature of the process air, ƟC 25 – 40

Relative humidity of the both air, - 0.6 – 0.9

Temperature of the regeneration air, ƟC 70 – 80

Flow rate air stream, m/s 1 – 4

Length of the desiccant bed, m 1 – 5

Solar radiation intensity, W/m2 0 – 1800

Operating time of each cycle, hr 1 – 5

Tp [ƟC] RHp [-] Tr [ƟC] u [m/s] Ld [m] I [W/m2] th [hr]
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290

291

292

293

294

295

296

297 Figure 2. Illustration of three operating conditions out of a total of N operating 

298 conditions

299 The flow diagram of the processes to develop the GPR model is shown in Figure 3 and the 

300 detailed process steps are summarized as below:

25 0.6 20 1 1 0 1

27.5 0.678 70 1.5 2 600 2

30 0.75 75 2 3 1200 3

32.5 0.825 80 2.5 4 1800 4

35 0.9 85 3 5 5

37.5 90 3.5

40 4
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301 I. Creation of operating conditions using the selected operating parameters (input 

302 data).

303 II. Generating the comprehensive dataset by the numerical model.

304 III. Classifying the comprehensive dataset into training and testing sets 

305 IV. Training the GPR model employing the training set in R software package. 

306 V. Testing the developed GPR model using the testing set.

307 VI. Model evaluations by RMSE, MAPE and R2 metrics.

308 VII. System performance prediction using the new inputs.

309

310 Figure 3. Flow diagram of the GPR model development

311

Creation of 
operating conditions

Comprehensive 
dataset Training Testing

GPR training 

GPR testing
 

GPR evaluation
 

GPR exponential  
Equations 

Numerical 
model

 

New operating 
conditions Predictions 
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312 3. Results and discussion

313 This section presents the generated mathematical equation with corresponding coefficients 

314 for both dehumidification and regeneration processes. The model evaluation by specified 

315 metrics and model testing are also discussed. Finally, the three main applications of the 

316 produced GPR model are explained and investigated.

317

318 3.1. Produced engineering equations

319 The GPR model is presented in the form of an exponential equation for both 

320 dehumidification and regeneration cycles. The equation is purely constructed based on 

321 the selected operating parameters only, and is used to predict the moisture extraction 

322 and moisture removal efficiencies. The equation is represented as: 

323                                                                                                              (22)  y = a + b ∗ ∑N𝑡
i = 1αi × exp  β(i)

324 where  and  are constant coefficients,  is a vector specified in Table 3,  is the a b α N𝑡

325 number of operating conditions in training set and  represents: y

326  y =  { ηme :   for dehumidification process#
ηmr  :           for regeneration process

327 And the exponential power, , is given in equation is calculated as:β

328 β(i) = ( ‒ (x1 ‒ Tp(i)2/(2θ1
2)) ‒  (x2 ‒ RHp(i)2/(2θ2

2)) ‒  (x3 ‒ u(i)2/(2θ3
2)) ‒

329  (x4 ‒ Ld(i)2/ (2θ4
2)) ‒   (x5 ‒ Tr(i)2/(2θ5

2)) ‒  (x6 ‒ I(i)2/(2θ6
2)) ‒  (x7 ‒ 𝑡ℎ(i)2/

330                                                                                 (23)(2θ7
2))

331 where, θ is a vector specified in Table 3, and , , , , ,  and  represent any x1 x2 x3  x4  x5 x6 x7

332 new operating parameters i.e., temperature, relative humidity and flow rate of the 

333 process air, length of the desiccant bed, temperature of the regeneration air and hourly 

334 operating time of the system, respectively. Table 4 gives all the coefficients and vector 

335 parameters for both dehumidification and regeneration cycles.

336 Table 4. The coefficient and vector values of the GPR based model
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337

338

339

340

341

342

343

344

345

346

347 3.2. Model testing

348 The model testing is performed to test the developed GPR model. The predicted 

349 performance parameters from GPR model and from the numerical model [2] are 

350 compared. The comparison was performed under 2160 operating conditions in testing 

351 set. The comparison results are presented in Figure 4 for first 100 operating conditions 

352 out of 2160 conditions. As it is seen in Figure 3, there is a close agreement between the 

353 predicted performance parameters by GPR and the numerical model results. The testing 

354 set contributes to the generalization of the GPR model and indicates that the GPR model 

355 is adequately trained. This feature also indicated that the model is not restricted to the 

356 training set and thus simultaneously controlled the model overfitting and complexity. 

357 The comparison between numerical model and GPR predictions for training set are also 

358 illustrated in Figure 4 for the first 100 operating conditions out of 4320 conditions. The 

359 overall comparison results were evaluated by the selected metrics given in Table 5. The 

360 maximum RSME and MAPE for moisture extraction were found to be 0.045 and 0.21, 

Dehumidification cycle Regeneration cycle

Nt α θ a b α θ a b

1 -4763.82 13.7 0.23 0.0024 -25253.13 19.4 0.91 0.003

2 3456.32 0.6 - - 47221.24 0.6 - -

3 -12140.8 2.36 - - -16611.46 4.78 - -

4 -5001.25 3.61 - - 12841.15 1.00E-10 - -

5 2408.33 96.7 - - -15837.75 11.38 - -

6 -6672.55 1319.62 - - 8161.87 896.72 - -

7 -2705.09 1.74 575.37 0.86

⋮ ⋮ - - ⋮ - - -

4319 6695.32 - - 1325.65 - - -

4320 -10506 - - 2624.53 - - -
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361 and for moisture removal efficiencies to be 0.082 and 0.39, respectively; and the lowest 

362 R2 was recorded as 0.97. The close agreement of results between the two models and 

363 also the very small error values proved the GPR model to be reliable and validated its 

364 results. Therefore, it can be concluded with high certainty that the model results are 

365 valid for any operating conditions constructed by the predefined ranges. Detailed 

366 comparison between different statistical approaches e.g, Artificial Neural Network 

367 (ANN), Support Vector Regression (SVR) and Kriging can be found in literatures [33, 

368 34].
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377 Figure 4. Comparison of the GPR model and numerical model results based on 

378 testing set (a): moisture extraction efficiency comparison, (b): moisture removal 

379 efficiency comparison
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383 (b)

384 Figure 5. Comparison of the GPR and numerical model results based on training set (a): 

385 moisture extraction efficiency, (b): moisture removal efficiency

386 Table 5. Comparison of the metric values between the GPR and numerical model

387

388

389

390 3.3. Application of the GPR based model

391 This section presents three main applications of the GPR model. The impact of four 

392 main parameters on the performance of solar/waste energy driven 

393 dehumidification/regeneration cycle are analysed and discussed to demonstrate the 

394 model capability in investigating the effect of different parameters. Additionally, the 

Moisture extraction efficiency Moisture removal efficiencySet

RSME MAPE R2 RSME MAPE R2

Training 0.012 0.11 1 0.03 0.25 0.98

Testing 0.045 0.21 0.98 0.082 0.39 0.97
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395 moisture extraction and moisture removal efficiencies of the system are predicted for a 

396 number of randomly generated operating conditions to prove model’s applicability in 

397 any random operating conditions. Eventually, the system’s performance is predicted in 

398 two warm and humid climates to show the applicability of the model in real conditions.

399 3.3.1. Impact of the operating parameters on system’s performance

400 Effect of four selected operating parameters, namely: hourly operating time, relative 

401 humidity of the process air, solar intensity and temperature of regeneration air on 

402 performance of the system are shown in Figure 6. In analysis of system performance 

403 based on specified operating parameters, other operating parameters were held 

404 constant to observe the impact of the selected parameters only. 

405 To study the effect of operation time, the performance of the system was predicted 

406 in three hours of the operation. As can be seen in Figure 6 (a), moisture extraction 

407 efficiency decreases from 0.31 to 0.15 as time of operation increases. This is due to 

408 the fact that an increase in operation time leads to more saturated desiccant bed 

409 which leads to less heat and mass transfer from process air to the desiccant bed. 

410 Contrarily, the moisture removal efficiency increases over the same period. This is 

411 simply because an increase in operation time contributes to more water evaporation 

412 from the saturated desiccant bed. However, a slight decrease in slope of the moisture 

413 removal efficiency is visible as the regeneration cycle eventually reaches the steady 

414 state.   

415 It can be observed in Figure 6 (b) that both moisture extraction and moisture 

416 removal efficiencies decrease when relative humidity of the process air is increased 

417 from 60% to 90%. However, this trend is more visible in the dehumidification cycle. 

418 This was expected as the performance of the dehumidification cycle is highly 
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419 dependent on humidity of the process air. The operating time in this case was 1 hour 

420 during which the greater relative humidity causes the desiccant bed to reach its 

421 saturation level faster. This seriously obstructs the water absorption phenomena 

422 during the dehumidification process and eventually leads to the decrease in moisture 

423 extraction efficiency. 

424 In Figure 6 (c), when solar intensity increases from 600 W/m2 to 1800 W/m2, the 

425 moisture removal efficiency increases from 0.32 to 0.74 whereas the 

426 dehumidification process remains constant. This trend was expected as in this 

427 particular case, temperature of the regeneration air was kept at 20°C and thus the 

428 solar radiation plays the key role in water evaporation phenomena during the 

429 regeneration process. 

430 Figure 6 (d) illustrates the effect of regeneration temperature on system 

431 performance. An increase in regeneration temperature from 70°C to 90°C leads to 

432 an increase in moisture removal efficiency from 0.83 to 0.98. Whereas it does not 

433 have a significant effect on the dehumidification efficiency. The reason for this is 

434 that the solar radiation in this case was ignored and the warm regeneration air was 

435 the main factor in water evaporation phenomena. Thus temperature of the 

436 regeneration air directly influences the regeneration cycle as the greater 

437 regeneration temperature contributes to more heat and mass transfer from the 

438 saturated desiccant bed.
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442 (c)

443  (d)

444 Figure 6. Impact of four operating conditions on system’s performance (a) Operating 

445 time (hr); (b) Relative humidity of process air (-); (c) Solar intensity (W/m2); (d) 

446 Temperature of regeneration air (°C).
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447 3.3.2. Prediction of the system performance under randomly generated 

448 operating conditions 

449 In this section, sixteen conditions were generated randomly to simulate the 

450 performance of system. The moisture extraction and moisture removal efficiencies 

451 of the system were predicted by GPR model. The model was run for one hour of 

452 operation and the discrete values of the operating parameters that were used to 

453 generate the operating conditions are listed in Table 6. As can be seen in Figure 7 

454 (a), the moisture extraction efficiency was predicted to vary between 0.15 and 0.38 

455 where the maximum and minimum levels occur in operating conditions 1 and 16 

456 respectively. Comparing these two conditions reveals that the first condition is drier 

457 than the 16th condition, which has the most humid conditions among the randomly 

458 generated operating conditions. This simply has led the system to reach its lowest 

459 moisture extraction efficiency. For the regeneration cycle, as can be seen from 

460 Figure 7 (b), the system shows the best performance in operating conditions 3, 8, 

461 11 and 14. The reason for this performance lies in the fact that in the above-

462 mentioned conditions, the solar radiation has the highest allowable amount, 1800 

463 W/m, which is the main parameter responsible for water evaporation. In contrary, 

464 the regeneration cycle has the lowest moisture removal efficiency in operating 

465 condition 1. Similarly, solar radiation in this condition, which is 600 W/m2, is also 

466 the main effective factor in regeneration cycle. Among conditions 4, 5 and 6, where 

467 warm air is responsible for the water evaporation from the saturated desiccant bed, 

468 the moisture removal efficiency increase from 0.87 in condition 4 to 0.98 in 

469 condition 6. This trend was expected as the temperature of the regeneration air was 

470 increased from 70ƟC in condition 4 to 90 ƟC in condition 6.

471  Table 6. Randomly generated operating conditions
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N Tp [ƟC] RHp [-] Tr [ƟC] U [m/s] Ld [m] I [W/m2]

1 25 0.6 20 1 1 600

2 26 0.7 20 2 2 1200

3 27 0.8 20 3 3 1800

4 28 0.9 70 4 4 0

5 29 0.6 80 1 5 0

6 30 0.7 90 2 1 0

7 31 0.8 20 3 2 1200

8 32 0.9 20 4 3 1800

9 33 0.6 20 1 4 600

10 34 0.7 20 2 5 1200

11 35 0.8 20 3 1 1800

12 36 0.9 20 4 2 600

13 37 0.6 20 1 3 1200

14 38 0.7 20 2 4 1800

15 39 0.8 20 3 5 600

16 40 0.9 20 4 1 600

472
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476 (b)

477 Figure 7. Prediction of the system performance under randomly generated operating 

478 conditions; (a): moisture extraction efficiency; (b): moisture removal efficiency

479 3.3.3. Prediction of the system performance in warm and climate weather 

480 conditions

481 The model is used to predict the performance of the system in warm and humid 

482 climates i.e. Singapore and Dubai and their weather information [35] are shown in 

483 Figure 8. The average temperature and RH humidity are chosen as input conditions 

484 of the process air. Flow rate of process air is 1 [m/s] and length of the desiccant bed 

485 is 1 [m]. The regeneration process is assumed to be done by warm air only where 

486 the temperature of regeneration air is 90 [ƟC] and thus the solar radiation intensity 

487 is ignored. Additionally, the prediction is done for 1 hour of operating time for each 

488 cycle. 

489 The prediction is done for an entire year in Singapore but for Dubai, the 

490 dehumidification system is needed from April to November. The reason for this is 

491 that the average temperature and relative humidity of the selected months should be 
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492 within the predefined ranges in Table 1. The prediction results for both moisture 

493 extraction and moisture removal efficiencies are shown in Figure 9. As can be seen, 

494 the moisture extraction efficiency in Singapore ranges 0.25-0.27. The reason for 

495 this stability is the stable weather conditions in Singapore all along the year where 

496 the average temperature ranges from 25 to 27.45 [ƟC] and the relative humidity is 

497 between 0.82 and 0.9. Similarly, the moisture removal efficiency in Singapore is 

498 relatively constant at 0.98. This is again because of the stable inputs of regeneration 

499 air where the main impacting factor, the temperature of regeneration air, is constant 

500 at 90 [ƟC] and the solar intensity is ignored. However, for Dubai, the moisture 

501 extraction efficiency ranged from 0.28 in August to 0.4 in April and the moisture 

502 removal efficiency is between 0.96 in August and 0.99 in November. The reason 

503 for relatively similar moisture removal efficiencies in both cities lies in the fact that 

504 apart from the condition of the desiccant bed happened during the dehumidification 

505 cycle, the main effecting factor is the warm air temperature, which is constant. 

506
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510 (b)

511 Figure 8. Weather information; (a): Singapore; (b): Dubai
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514 (b)

515

516 Figure 9. Prediction of the system performance in warm and humid climate; (a): moisture 

517 extraction efficiency; (b): moisture removal efficiency

518

519 4. Conclusion

520 The authors were pioneered in bringing the Gaussian process regression into investigation 

521 of the dehumidification systems. The GPR model was first trained by a training set and 

522 then tested with a numerical model through the testing set. Such kind of effort directly 

523 correlated the main operating parameters of the desiccant system with the performance 

524 parameters. The selected operating parameters were temperature, relative humidity and 

525 flow rate of process air, temperature of the regeneration air, length of the desiccant bed, 

526 solar radiation intensity and operating time of the system and the selected performance 

527 parameters were moisture extraction efficiency for the dehumidification cycle and moisture 

528 removal efficiency for the regeneration cycle. The model was tested by a numerical model 

529 and was evaluated by three common metrics. The maximum RSME and MAPE were 0.045 

530 and 0.21 for moisture extraction, and 0.082 and 0.39 for moisture removal efficiencies, 
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531 respectively; and the lowestR2 was 0.97. The developed GPR model was employed to study 

532 the effect of four operating parameters on performance of the system, prediction of the 

533 performance parameters under 16 randomly generated operating conditions and warm and 

534 humid climates. The presented GPR model is prompt and time efficient in performance 

535 prediction of the dehumidification systems and is needless of heat and mass transfer 

536 equations. The model can be used as a robust and reliable tool in design and optimization 

537 of the dehumidification systems.

538
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