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Abstract This paper considers the problem of simple linear regression with interval-
censored data. That is, n pairs of intervals are observed instead of the n pairs of precise
values for the two variables (dependent and independent). Each of these intervals is
closed but possibly unbounded, and contains the corresponding (unobserved) value
of the dependent or independent variable. The goal of the regression is to describe the
relationship between (the precise values of) these two variables by means of a linear
function.

Likelihood-based Imprecise Regression (LIR) is a recently introduced, very gen-
eral approach to regression for imprecisely observed quantities. The result of a LIR
analysis is in general set-valued: it consists of all regression functions that cannot be
excluded on the basis of likelihood inference. These regression functions are said to
be undominated.

Since the interval data can be unbounded, a robust regression method is necessary.
Hence, we consider the robust LIR method based on the minimization of the residu-
als’ quantiles. For this method, we prove that the set of all the intercept-slope pairs
corresponding to the undominated regression functions is the union of finitely many
polygons. We give an exact algorithm for determining this set (i.e., for determining
the set-valued result of the robust LIR analysis), and show that it has worst-case time
complexity O(n3 logn). We have implemented this exact algorithm as part of the R
package linLIR.
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1 Introduction

Likelihood-based Imprecise Regression (LIR) is a recently introduced approach to
regression for imprecisely observed quantities (see Cattaneo and Wiencierz, 2012,
2011). In this approach, it is assumed that the available data are coarse in the sense
of Heitjan and Rubin (1991). That is, precise values of the quantities of interest exist,
but we cannot observe them directly. Instead, we have only imprecise observations:
these are subsets of the sample space, which we know to contain the precise values
of the quantities of interest.

At the two extremes of the range of possible imprecise observations are the pre-
cise observations and the missing data, respectively. We have a precise observation
when the imprecise observation contains a single value, which we then know to be
the precise value of the quantity of interest (which in this case is thus indirectly ob-
served). At the other extreme we have the missing data, which occur when the impre-
cise observation is the whole sample space, since in this case we learn nothing about
the precise value of the quantity of interest.

Between these two extremes lies the whole range of possible imprecise observa-
tions, which can be any subset of the sample space. In particular, it can be argued that
continuous quantities are always imprecisely observed, since no measuring device
can be infinitely precise. Therefore, regression for imprecisely observed quantities
is certainly an important topic in statistics. In fact, various regression methods have
been proposed in several special cases (see for example Beaton et al, 1976; Buck-
ley and James, 1979; Dempster and Rubin, 1983; Li and Zhang, 1998; Pötter, 2000;
Manski and Tamer, 2002; Marino and Palumbo, 2002; Gioia and Lauro, 2005; Ferson
et al, 2007; Chen and Van Keilegom, 2009; Utkin and Coolen, 2011). In contrast to
most of these proposals, LIR approaches the problem of regression with imprecisely
observed quantities from a very general perspective.

The imprecise observations induce a likelihood function on the joint probability
distributions of the random variables and random sets representing the precise values
and imprecise observations, respectively. The result of a LIR analysis consists of all
regression functions that cannot be excluded on the basis of likelihood inference.
Hence, the result of a LIR analysis is in general set-valued (set-valued results are
obtained for instance also by Manski and Tamer, 2002; Marino and Palumbo, 2002;
Gioia and Lauro, 2005; Vansteelandt et al, 2006; Ferson et al, 2007). The extent of
the set-valued result of a LIR analysis reflects the whole uncertainty in the regression
problem with imprecisely observed quantities. That is, it encompasses the statistical
uncertainty due to the finite sample as well as the indetermination related to the fact
that the quantities are only imprecisely observed (these two kinds of uncertainty in
the set-valued results are discerned for example also by Manski and Tamer, 2002;
Vansteelandt et al, 2006).

In the present paper we consider a robust LIR method, in which the residuals’
quantiles are used to compare the possible regression functions (see Cattaneo and
Wiencierz, 2012, 2011). This method is closely related to the least median (or more
generally, quantile) of squares regression, which is a very robust regression method
for precisely observed quantities (see for example Rousseeuw, 1984; Hampel, 1975;
Hampel et al, 1986; Rousseeuw and Leroy, 1987; Maronna et al, 2006; Huber and
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Ronchetti, 2009). Besides being a virtue by itself, the robustness of the regression
method is practically necessary when dealing with possibly unbounded imprecise
observations, because an unbounded imprecise observation means that the precise
value can be arbitrarily far away. In practical applications, an unbounded imprecise
observation can usually be replaced by a bounded (but very wide) one: the advantage
of robust methods is that they do not depend (much) on the choice of the replacing
imprecise observation.

In this paper we focus on the case of simple linear regression with interval data.
That is, there are two variables of interest, which are real-valued and interval-cen-
sored (i.e., the imprecise observations are possibly unbounded intervals). For this
situation, we develop the first exact algorithm to determine the set-valued result
of the robust LIR method (see Wiencierz and Cattaneo, 2012, for some prelimi-
nary ideas). The first part of this algorithm is related to the first exact algorithm for
least median of squares regression, proposed by Steele and Steiger (1986) (see also
Rousseeuw and Leroy, 1987, Chapter 5), which was also the basis of many other de-
velopments (see for example Souvaine and Steele, 1987; Edelsbrunner and Souvaine,
1990; Stromberg, 1993; Hawkins, 1993; Carrizosa and Plastria, 1995; Watson, 1998;
Bernholt, 2005; Mount et al, 2007). Here, we develop the algorithm for the robust
LIR method in full detail and generality. In particular, we do not assume that the data
are “in general position”, since this assumption (which is usual in the context of least
median of squares regression) would be too restrictive for interval-censored data.

The paper is organized as follows. In the next section, we briefly present the robust
LIR method in the framework of simple linear regression with interval data. Section 3
contains the main results of the paper, expressed as two theorems, whose proofs are
in the appendix. These results give us an exact algorithm for the robust LIR method.
The computational complexity of the algorithm is then studied in Subsection 3.3. We
have implemented the algorithm as part of an R package, which is briefly introduced
in Subsection 3.4, and used to analyze data from the European Social Survey (ESS)
in Section 4. The final section is devoted to conclusions and directions for further
research.

2 LIR in the case of simple linear regression with interval data

In the case of simple linear regression, the relation between two real-valued variables,
X and Y , shall be described by means of a linear function. Hence, the set of all possi-
ble regression functions is F := { fa,b : a,b ∈ R}, where the functions fa,b : R→ R
are defined by fa,b(x) = a+bx for all x∈R. We consider here the case of imprecisely
observed quantities, and in particular of interval data. That is, instead of directly ob-
serving the realizations of the variables X and Y , we can only observe the realizations
of the extended real-valued variables X , X , Y , and Y , which are the endpoints of the
interval data [X ,X ] and [Y ,Y ]. Throughout the paper, [w,w] denotes the closed inter-
val consisting of all real numbers w such that w ≤ w ≤ w. This notation is used for
all w,w ∈R, so that the interval [w,w] is empty when w > w, and does not contain its
endpoints when these are infinite.
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2.1 The probability model

The only assumption about the joint distribution of the six random variables X , Y , X ,
X , Y , and Y is the following:

P(X ≤ X ≤ X and Y ≤ Y ≤ Y )≥ 1− ε , (1)

for some ε ∈ [0,1/2[. That is, apart for the choice of ε , the probability model is fully
nonparametric: it is only assumed that the (possibly unbounded) rectangle [X ,X ]×
[Y ,Y ] contains the pair (X ,Y ) with probability at least 1− ε . In other words, an im-
precise observation may not cover the precise data point with probability at most ε .
The usual choice of ε is 0 (see for instance Heitjan and Rubin, 1991), but sometimes
it can be useful to allow the imprecise data to be incorrect with a positive probability,
and ε ∈ ]0,1/2[ is then an upper bound on this probability. Apart from this assumption,
there is no restriction on the set of possible distributions of the precise and imprecise
data. In particular, nothing is assumed about the joint distribution of the quantities of
interest, X and Y .

The relation between X and Y shall be described by a linear function f ∈F . For
each f ∈F , the quality of the description depends on the marginal distribution of the
(absolute) residual

R f := |Y − f (X)| .

The more this distribution is concentrated near 0, the better is the description of the
relation between X and Y . In the robust LIR method that we consider in this paper,
the concentration near 0 of the distribution of the residual R f is evaluated by its
median, or more generally by its p-quantile, with p ∈ ]ε,1− ε[. The closer to 0 the
p-quantile is, the better f describes the relation between X and Y . In particular, the
best description of the relation of interest is a linear function for which the p-quantile
of the residual’s distribution is minimal.

Assuming for simplicity that the p-quantiles of the distribution of R f are unique
for all f ∈ F , and that there is a unique f0 ∈ F such that the corresponding p-
quantile q0 ∈R≥0 is minimal, we can characterize geometrically the best description
f0 as follows. For each f ∈F and each q ∈ R≥0, let

B f ,q :=
{
(x,y) ∈ R2 : |y− f (x)| ≤ q

}
be the closed band of (vertical) width 2q around the graph of f . Then B f0,q0 is the
thinnest band of the form B f ,q containing (X ,Y ) with probability at least p. This is in
particular the case when Y has for each x ∈ R a conditional distribution given X = x
that is strictly unimodal and symmetric around f0(x) (see also Tasche, 2003). That
is, in the linear model Y = a0 + b0 X +E, the best description in the above sense is
f0 = fa0,b0 , when the conditional distribution of the error term E |X = x is strictly
unimodal and symmetric (around 0) for all x ∈ R (e.g., when the error term E is
independent of X and normally distributed with mean 0).
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2.2 The LIR analysis

Let the nonempty (possibly unbounded) rectangles [x1,x1]× [y1,y1], . . . , [xn,xn]×
[yn,yn]⊆R2 be n independent realizations of the random set [X ,X ]× [Y ,Y ]. The LIR
analysis consists in using likelihood inference to identify a set of plausible regression
functions. The imprecise data induce a (nonparametric) likelihood function on the set
of all joint probability distributions (of X , Y , X , X , Y , and Y ) satisfying condition (1).
For each f ∈F , let C f be the likelihood-based confidence region with cutoff point
β for the p-quantile of the distribution of R f , where β ∈ [(max{p,1− p}+ ε)n ,1[.
That is, C f consists of all possible values of the p-quantile of the distribution of R f ,
for all probability distributions whose likelihood exceeds β times the maximum of
the likelihood function.

If the quantities of interest were precisely observed, C f would be the empirical
likelihood confidence interval obtained by thresholding the empirical likelihood ra-
tio at level β . The fact that the quantities of interest are only imprecisely observed
entails an enlargement of this interval. Therefore, C f is asymptotically a (conserva-
tive) confidence region of level Fχ2(−2 logβ ) for the p-quantile of the distribution
of the (absolute) residual R f , where Fχ2 is the cumulative distribution function of
the chi-square distribution with 1 degree of freedom (see Owen, 2001; Cattaneo and
Wiencierz, 2012, for more details).

In order to obtain an explicit formula for the confidence regions C f , we define

k := max

({
k ∈ {1, . . . , i−1} :

(
p− ε

k

)k(1− p+ ε

n− k

)n−k

≤ β

nn

}
∪{0}

)
,

k := min

({
k ∈ {i, . . . ,n−1} :

(
p+ ε

k

)k(1− p− ε

n− k

)n−k

≤ β

nn

}
∪{n}

)
,

where i := d(p− ε)ne and i := b(p+ ε)nc+1 (i.e., i−1 is the largest integer smaller
than (p− ε)n, while i is the smallest integer larger than (p+ ε)n). Clearly, the two
integers k and k depend on ε , p, n, and β , and satisfy

0≤ k ≤ i−1 < (p− ε)n≤ pn≤ (p+ ε)n < i≤ k ≤ n.

Moreover, when ε , p, and n are fixed, k and k are an increasing and a decreasing
function of β , respectively, and in particular, if β is sufficiently large, then k = i−1
and k = i.

Now, for each function f ∈F and each imprecise observation [xi,xi]× [yi,yi], we
define the lower and upper (absolute) residuals

r f ,i := min
(x,y)∈[xi,xi]×[yi,yi]

|y− f (x)| ,

r f ,i := sup
(x,y)∈[xi,xi]×[yi,yi]

|y− f (x)| .

Obviously, r f ,i ≤ r f ,i, and r f ,i ∈R≥0, while r f ,i ∈R≥0. In particular, r f ,i =+∞ if and
only if either the linear function f is not constant and the rectangle [xi,xi]× [yi,yi] is
unbounded, or f is constant and the interval [yi,yi] is unbounded.
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As usual in statistics, r f ,(i) and r f ,(i) denote then the ith smallest lower and upper
residuals, respectively. That is, r f ,(1) ≤ ·· · ≤ r f ,(n) are the ordered lower residuals and
r f ,(1) ≤ ·· · ≤ r f ,(n) are the ordered upper residuals. Then Corollary 2 of Cattaneo and
Wiencierz (2012) implies that

C f = [r f ,(k+1),r f ,(k)]

for all f ∈F . That is, the likelihood-based confidence region C f ⊆ R≥0 is a non-
empty closed interval, which is bounded if and only if either f is not constant and
there are at least k bounded imprecise observations, or f is constant and there are at
least k imprecise observations [xi,xi]× [yi,yi] such that the interval [yi,yi] is bounded.

It is important to note that in general the interval C f is proper (i.e., it contains
more than one value), even when β is so large that k = i− 1 and k = i. In this case,
C f represents the maximum likelihood estimate of the p-quantile of the distribution
of R f , which in general is not a single value because the data are imprecise and
quantiles of a distribution are not necessarily unique. For example, if n is even, ε = 0,
and p = 1/2, then i = n/2 and i = n/2+ 1, and thus the maximum likelihood estimate
of the p-quantile (i.e., the median) of the distribution of R f is [r f ,(n/2),r f ,(n/2+1)].

Hence, for each linear function f ∈F , we have an interval estimate C f for the
p-quantile of the distribution of the (absolute) residual R f . As in least quantile of
squares regression, we would like to select the regression function f ∈F by mini-
mizing the estimate of the residual’s p-quantile, but comparing the intervals C f gives
us only a partial order on F . The linear functions f ∈F that are minimal according
to this partial order are said to be undominated. That is, f is undominated if and only
if there is no f ′ ∈F such that r f ′,(k) < r f ,(k+1). In order to simplify the description
of the undominated functions, define

qLRM := inf
f∈F

r f ,(k)

(the name qLRM shall be clarified in Subsection 3.1). The set of all undominated
regression functions

U := { f ∈F : r f ,(k+1) ≤ qLRM}

is the result of the robust LIR method considered in this paper. It represents the whole
uncertainty about the linear function that best describes the relation between X and
Y , including the statistical uncertainty due to the finite sample as well as the indeter-
mination related to the fact that the quantities are only imprecisely observed.

3 An exact algorithm for LIR

We now present an exact algorithm for determining the result of the robust LIR anal-
ysis described in Section 2. That is, an exact algorithm for calculating the set U of
all undominated regression functions, given n nonempty (possibly unbounded) rect-
angles [x1,x1]× [y1,y1], . . . , [xn,xn]× [yn,yn] ⊆ R2 and the two integers k and k with
0≤ k < k ≤ n. The algorithm consists of two parts: in the first one, we determine the
bound qLRM , which is then used in the second part to identify the set U . As regards
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the first part, we will show that in order to determine qLRM , it suffices to minimize
r f ,(k) over a finite subset of F . For the second part of the algorithm, we will see
that the set of all the intercept-slope pairs corresponding to the undominated regres-
sion functions is the union of finitely many polygons. As a by-product, we obtain a
representation of the result of the least quantile of squares regression in the case of
precise data, without any assumption about the data being “in general position”. We
will show that the computational complexity of our exact algorithm is O(n3 logn).
We have implemented this algorithm as part of an R package, which we will briefly
introduce at the end of the present section.

3.1 Part 1: Determining the bound qLRM

Let D be the set of all i∈ {1, . . . ,n} such that the rectangle [xi,xi]× [yi,yi] is bounded.
Then define B := {0} if there are less than k bounded imprecise observations (i.e., if
|D |< k, where |D | denotes the cardinality of the set D), and

B :=
{

yi− y j

xi− x j
: (i, j) ∈D2 and xi > x j and yi > y j

}
∪
{

yi− y j

xi− x j
: (i, j) ∈D2 and xi > x j and yi < y j

}
∪
{

yi− y j

xi− x j
: (i, j) ∈D2 and xi > x j and yi < y j

}
∪
{

yi− y j

xi− x j
: (i, j) ∈D2 and xi > x j and yi > y j

}
∪{0}

otherwise (i.e., if |D | ≥ k). The central ideas of the first part of the algorithm are
that in order to obtain qLRM it suffices to consider the linear functions fa,b with slope
b ∈B, and that for each slope b the intercept a ∈R minimizing r fa,b,(k) can be easily
calculated, since the problem becomes one-dimensional. These ideas are formalized
in the following theorem, but first we need some additional definitions. For each b∈R
and each i ∈ {1, . . . ,n}, define

zb,i =


yi−bxi if b < 0,
yi if b = 0,
yi−bxi if b > 0,

zb,i =


yi−bxi if b < 0,
yi if b = 0,
yi−bxi if b > 0.

For each b ∈ R and each j ∈ {1, . . . ,n}, as usual, zb,( j) and zb,( j) denote then the jth
smallest value among the zb,i and among the zb,i, respectively. Furthermore, for each
b ∈ R and each j ∈ {1, . . . ,n− k+ 1}, let zb,[ j] denote the kth smallest value among
the zb,i such that zb,i ≥ zb,( j).



8 Marco E. G. V. Cattaneo, Andrea Wiencierz

Theorem 1 If there are less than k imprecise observations [xi,xi]× [yi,yi] such that
the interval [yi,yi] is bounded, then

qLRM =+∞,

{ f ∈F : r f ,(k) = qLRM}= F .

Otherwise (i.e., when there are at least k imprecise observations [xi,xi]× [yi,yi] such
that the interval [yi,yi] is bounded),

qLRM = 1
2 min
(b, j)∈B×{1,...,n−k+1}

(zb,[ j]− zb,( j)),

{ f ∈F : r f ,(k) = qLRM} ⊇{
fa′,b′ : (b′, j′) ∈ argmin

(b, j)∈B×{1,...,n−k+1}
(zb,[ j]− zb,( j)) and a′ = 1

2 (zb′,( j′)+ zb′,[ j′])

}
,

where the set on the left-hand side is infinite when the inclusion is strict. However,
the inclusion is certainly an equality when the following condition is satisfied: if there
is a pair (i, j) ∈ D2 such that xi = x j and max{yi,y j}−min{yi,y j} = 2qLRM , then
i 6= j and the two intervals [yi,yi] and [y j,y j] are nested (i.e., either [yi,yi] ⊆ [y j,y j],
or [y j,y j]⊆ [yi,yi]).

Some further explanations are needed to fully understand the results in Theo-
rem 1. As seen in Subsection 2.2, for each linear function f ∈F , we have a like-
lihood-based confidence region [r f ,(k+1),r f ,(k)] for the p-quantile of the residual’s
distribution. Hence, the functions f ∈F minimizing r f ,(k) can be interpreted as the
results of a minimax approach to our regression problem: they are called Likelihood-
based Region Minimax (LRM) regression functions (see Cattaneo, 2007). For these
functions, the upper endpoint of the interval estimate of the p-quantile of the resid-
ual’s distribution is qLRM , which explains its name.

Theorem 1 implies in particular that an LRM regression function always exists,
though it is not necessarily unique. When it is unique, it is denoted by fLRM . In this
case, B fLRM ,qLRM is the thinnest band of the form B f ,q containing at least k imprecise
observations, for all f ∈F and all q ∈ R≥0. More generally, if there are at least k
imprecise observations [xi,xi]× [yi,yi] such that the interval [yi,yi] is bounded, then
2qLRM is the (vertical) width of the thinnest bands of the form B f ,q containing at least
k imprecise observations (there can be more than one such bands, but only finitely
many when the condition at the end of Theorem 1 is satisfied).

If all interval data are degenerate: xi = xi and yi = yi for all i ∈ {1, . . . ,n} (i.e.,
the imprecise data are in fact precise), then the LRM regression functions corre-
spond to the least quantile of squares (or absolute residuals) regression functions
f ∈ F minimizing the (square of the) kth smallest absolute residual r f ,(k) = r f ,(k)
(see Rousseeuw and Leroy, 1987). That is, the LRM regression functions can be in-
terpreted as the results of a generalization of the least quantile of squares regression to
the case of imprecise data. The first part of our algorithm corresponds to a generaliza-
tion (to the case of general quantiles and imprecise data) of the first exact algorithm
for least median of squares regression, proposed by Steele and Steiger (1986) (see
also Rousseeuw and Leroy, 1987, Chapter 5).
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The key result behind Theorem 1 is that (when the condition at the end of the
theorem is satisfied) if B f ′,q′ is one of the thinnest bands of the form B f ,q contain-
ing at least k imprecise observations, then the union of these imprecise observations
touches one of the two borders of B f ′,q′ in at least two different points. This is a
simple consequence of general results by Cheney (1982, Chapters 1 and 2), as sug-
gested by Stromberg (1993). From this property it follows that one of the two borders
of B f ′,q′ (which obviously have the same slope as f ′) is the line determined by two
points on the borders of the imprecise observations contained in B f ′,q′ . Hence, ei-
ther the slope of f ′ is 0, or it is determined by two vertices of a pair of bounded
imprecise observations contained in B f ′,q′ . The set B consists of all the possible
slopes that can be obtained in this way: they are at most 4

(n
2

)
+ 1. For each possi-

ble slope b ∈B, finding the thinnest bands of the form B fa,b,q containing at least k
imprecise observations (for all a ∈ R and all q ∈ R≥0) corresponds to finding the
shortest intervals (of the form [a− q, a+ q]) containing at least k of the n intervals
[zb,1,zb,1], . . . , [zb,n,zb,n]. This is a finite problem: it suffices to consider the intervals
[zb,( j),zb,[ j]] with j ∈ {1, . . . ,n− k+1}.

Therefore, Theorem 1 gives us an algorithm for determining the bound qLRM , by
reducing the minimization of r f ,(k) on the infinite set F to a minimization problem
on the finite set B×{1, . . . ,n−k+1}. This constitutes the first part of our algorithm
for the robust LIR analysis.

Besides that, Theorem 1 gives us also an algorithm for finding all LRM regression
functions, when the condition at the end of the theorem is satisfied. An explicit for-
mula for the set of all LRM regression functions in the general case (i.e., also when
this condition is not satisfied) can be easily obtained, but requires several case dis-
tinctions and goes beyond the scope of the present paper. However, a brief comment
on the condition at the end of Theorem 1 can be helpful in understanding the theo-
rem. This condition is sufficient (but not necessary) for excluding the cases in which
the set of all LRM regression functions is an infinite, proper subset of F . That is, for
excluding the situations in which there is a thinnest band of the form B f ,q contain-
ing at least k imprecise observations, but the union of these imprecise observations
touches each border of the band in only one point. In fact, in such situations these
contact points have the same x-coordinate, and can thus be written as (x,y+ qLRM)
and (x,y−qLRM), for some x,y∈R. In this case, there are infinitely many linear func-
tions f ∈F going through the point (x,y) and such that the band B f ,qLRM contains at
least k imprecise observations. All these functions f are LRM regression functions.

3.2 Part 2: Identifying the set U

After having determined the bound qLRM , in the second part of the algorithm we
identify the set U of all undominated regression functions (i.e., the result of the
robust LIR analysis described in Section 2).

Theorem 2

U =

{
fa,b : b ∈ R and a ∈

n−k⋃
j=1

[zb,(k+ j)−qLRM, zb,( j)+qLRM]

}
.
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A linear function f ∈F is undominated if and only if r f ,(k+1) ≤ qLRM . That is,
if and only if the band B f ,qLRM intersects at least k+ 1 imprecise observations. For
each possible slope b ∈ R, finding all the bands of the form B fa,b,qLRM intersecting
at least k + 1 imprecise observations (for all a ∈ R) corresponds to finding all the
intervals of the form [a−qLRM, a+qLRM] intersecting at least k+1 of the n intervals
[zb,1,zb,1], . . . , [zb,n,zb,n]. For each b ∈ R and each nonempty set I ⊆ {1, . . . ,n}, the
interval [a− qLRM, a+ qLRM] (with a ∈ R) intersects all the intervals [zb,i,zb,i] with
i ∈I if and only if a ∈ [maxi∈I zb,i−qLRM, mini∈I zb,i +qLRM]. Therefore,

U =

 fa,b : b ∈ R and a ∈
⋃

I⊆{1,...,n} : |I |=k+1

[
max
i∈I

zb,i−qLRM, min
i∈I

zb,i +qLRM

] .

Theorem 2 gives a simpler expression for U , in which the number of intervals in the
union is reduced from

( n
k+1

)
to n− k.

Hence, Theorem 2 gives us an algorithm for identifying, for each possible slope
b ∈R, the set of all intercepts a ∈R such that the linear function fa,b is undominated.
This suffices for most practical purposes, but Theorem 2 also enables us to precisely
describe as union of finitely many (possibly unbounded) polygons the set

U ′ :=
{
(a,b) ∈ R2 : fa,b ∈U

}
of all the intercept-slope pairs corresponding to the undominated regression func-
tions. More precisely, U ′ is a subset of the plane R2 bounded by finitely many line
segments and half-lines. However, U ′ is not necessarily convex nor connected, and
if there are imprecise observations [xi,xi]× [yi,yi] such that the interval [xi,xi] is un-
bounded and [yi,yi] 6= R, then U ′ is not even necessarily closed.

Consider first the case with no imprecise observations [xi,xi]× [yi,yi] such that
the interval [xi,xi] is unbounded and [yi,yi] 6= R. In this case, for each i ∈ {1, . . . ,n},
the function b 7→ zb,i on R is either continuous and piecewise linear, or constant equal
−∞, while the function b 7→ zb,i on R is either continuous and piecewise linear, or
constant equal +∞. Therefore, for each j ∈ {1, . . . ,n−k}, the function b 7→ zb,(k+ j)−
qLRM on R is either continuous and piecewise linear, or constant equal −∞, while
the function b 7→ zb,( j) + qLRM on R is either continuous and piecewise linear, or
constant equal +∞. Thus, Theorem 2 implies that U ′ is a closed subset of the plane
R2 bounded by finitely many line segments and half-lines. That is, U ′ is the union
of finitely many (possibly unbounded) polygons (see for example Alexandrov, 2005,
Subsection 1.1.1).

If [xi,xi]× [yi,yi] is an imprecise observation such that the interval [xi,xi] is un-
bounded and [yi,yi] 6= R, then at least one of the two functions b 7→ zb,i and b 7→ zb,i
on R has a discontinuity at b = 0. Therefore, in this case, the functions b 7→ zb,(k+ j)−
qLRM and b 7→ zb,( j)+ qLRM on R (with j ∈ {1, . . . ,n− k}) can be discontinuous at
b = 0. As a consequence, Theorem 2 implies that U ′ is a subset of the plane R2

bounded by finitely many line segments and half-lines, but U ′ is not necessarily
closed. However, the two parts U ′ ∩ (R×{0}) and U ′ ∩ (R×R 6=0) are relatively
closed in R×{0} and R×R 6=0, respectively.
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If the imprecise data are in fact precise (i.e., all interval data are degenerate: xi = xi
and yi = yi for all i ∈ {1, . . . ,n}) and k = k−1, then U is the set of all least quantile
of squares regression functions f ∈F minimizing the kth smallest absolute residual
r f ,(k) = r f ,(k). That is, Theorem 2 gives us in particular an algorithm for calculating
the result of the least quantile of squares regression, without any assumption about
the data being “in general position”.

3.3 Computational complexity

The algorithm consisting of the two parts presented in Subsections 3.1 and 3.2 is
the first exact algorithm to determine the result of the robust LIR analysis in the
case of simple linear regression with interval data. It has worst-case time complexity
O(n3 logn), exactly as the first exact algorithm for least median of squares regression
(see Steele and Steiger, 1986).

In the first part of the algorithm, described in Subsection 3.1, for each possible
slope b ∈B, we must determine the pair (zb,( j),zb,[ j]) (with j ∈ {1, . . . ,n− k+ 1})
such that the difference zb,[ j] − zb,( j) is minimal. We can do this as follows: after
having calculated the values zb,1, . . . ,zb,n and zb,1, . . . ,zb,n, we sort the two lists, ob-
taining zb,i1 , . . . ,zb,in (with zb,i j = zb,( j)) and zb,(1), . . . ,zb,(n). Then, for each j from 1
to n− k+1, we retrieve the pair consisting of the jth entry (i.e., zb,i j ) in the first list
and of the kth entry in the second one, and after that we remove the value zb,i j from
the second list. In this way, the pairs of values that we have retrieved include all the
pairs (zb,( j),zb,[ j]) with j ∈ {1, . . . ,n−k+1} (and possibly some irrelevant additional
pairs with larger differences, if some of the zb,i are equal), and we did not have to
calculate a new list of zb,i for each j in order to determine zb,[ j].

Hence, for each possible slope, we have to calculate and sort two lists of length n,
which can be done in time O(n logn), and then for each j∈{1, . . . ,n−k+1}, we have
to search and remove a value from the second list, which can be done in time O(logn)
using balanced trees (see for example Knuth, 1998, Subsection 6.2.3). Therefore,
since there are at most 4

(n
2

)
+ 1 possible slopes, the worst-case time complexity of

the first part of the algorithm is O(n3 logn).
In the second part of the algorithm, described in Subsection 3.2, for a given slope

b ∈ R, we must determine the pairs (zb,(k+ j),zb,( j)) for all j ∈ {1, . . . ,n− k}. This
can be done in time O(n logn), since it suffices to calculate and sort the two lists
zb,1, . . . ,zb,n and zb,1, . . . ,zb,n, and then, for each j from 1 to n− k, retrieve the pair
consisting of the (k+ j)th entry in the first list and of the jth entry in the second one.

For example, if we want to graphically represent the set U ′ of all the intercept-
slope pairs (a,b) ∈ R2 corresponding to the undominated regression functions fa,b,
then it suffices to consider a finite number of possible values for the slope b, resulting
in a worst-case time complexity of O(n logn) for the second part of the algorithm.
However, if the goal is to precisely describe the set U ′ as union of finitely many
(possibly unbounded) polygons, then the (worst-case) number of values b ∈ R that
must be considered depends on n. In this case, it suffices to consider all values b ∈ R
such that some of the 2n graphs of the functions b 7→ zb,i−qLRM and b 7→ zb,i +qLRM
cross each other, and five additional values for the slope b. More precisely, these
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additional values are 0, a positive and a negative value sufficiently near 0 (in order
to clarify what happens in the limits b ↓ 0 and b ↑ 0), and finally a positive and a
negative value sufficiently far from 0 (in order to clarify what happens in the limits
b ↑ +∞ and b ↓ −∞). Therefore, the worst-case number of values b ∈ R that must
be considered is 2

(2n
2

)
+5, and so the worst-case time complexity of the second part

of the algorithm is O(n3 logn), when the goal is to precisely describe the set U ′ as
union of finitely many (possibly unbounded) polygons.

Altogether, the worst-case time complexity of the whole algorithm for the robust
LIR analysis is thus O(n3 logn).

3.4 R package

We have implemented the presented algorithm in the statistical software environment
R (R Development Core Team, 2012). It is part of the package linLIR (Wiencierz,
2013), designed for the implementation of LIR methods for the case of linear regres-
sion with interval data. The available version of the linLIR package includes a func-
tion to create a particular data object for interval-valued observations (idf.create),
the function s.linlir to perform the robust LIR analysis for two variables out of the
data object, as well as associated methods for the generic functions print, summary,
and plot. Both parts of the algorithm are incorporated in the s.linlir function.
The corresponding plot method provides tools to visualize the LIR results includ-
ing, e.g., the set U ′.

The linLIR package provides a ready-to-use first implementation of the robust
LIR method for linear regression with interval data, although the current version of
the s.linlir function is not optimized for computational speed yet. In the following
section, we illustrate the implementation by means of an application example.

4 Analysis of ESS data using the linLIR package

In recent years, there has been a lively interest in analyzing subjective well-being in
various disciplines of the social and behavioral sciences. In this context, one im-
portant question is how an increase in income translates to subjective well-being
(see, e.g., Deaton, 2012; Clark et al, 2008; Diener and Biswas-Diener, 2002). Em-
pirical studies in this field often use global measures of subjective well-being, which
are obtained from a single survey question about the overall satisfaction with life.
These global measures are indicators of the state of an individual’s well-being, and
therefore, it is sensible to use them to analyze subjective well-being (Deaton, 2008),
although, of course, they do not capture the entire complexity of the concept of well-
being (Huppert et al, 2009). As single-item measures are usually measured on a dis-
crete scale, they can be considered as coarse observations of the latent, continuous
variable of interest degree of subjective well-being. The coarseness of the discrete
values can be represented by intervals, thus, the LIR approach is suitable to ana-
lyze this kind of data. Moreover, when investigating the relation between income and
subjective well-being, sometimes also the income data are only available as classes,
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which represent in fact intervals that form a partition of the associated observation
space R≥0. Finally, as the relation between income and subjective well-being is usu-
ally assumed to be log-linear (see, e.g., Deaton, 2012; Diener and Biswas-Diener,
2002), we can conduct a linear LIR analysis with the logarithm of income as inde-
pendent variable X and subjective well-being as dependent variable Y to analyze the
relation of interest, accounting for the imprecision of the data.

In this section, we analyze data from the fifth round of the ESS (Norwegian So-
cial Science Data Services, 2010) to illustrate the implementation of the linear LIR
analysis. The ESS is a biennial multi-country survey established to monitor chang-
ing attitudes and behavior of people in Europe. The data collected for the ESS are
available free of charge on the ESS website www.europeansocialsurvey.org.

Previous empirical studies indicated that the relation between income and sub-
jective well-being on the individual level is not the same in rich countries as in poor
countries, and furthermore, that there may be different relations for men than for
women (see, e.g., Clark et al, 2005; Diener and Biswas-Diener, 2002). For these rea-
sons, we choose Finland and Bulgaria as representatives for the groups of rich and
poor European countries, respectively, and we will analyze only the corresponding
subsets of the ESS data set. Furthermore, for each country we will perform separate
LIR analyses for the subpopulations of women and men. From the variables included
in the ESS data set we retrieve the following ones: household income (net per month,
in categories corresponding to the decile classes of the income distribution in each
country) and overall satisfaction with life (on a discrete scale from 0 – extremely
dissatisfied to 10 – extremely satisfied). In a data preprocessing step, the income
classes are replaced by the corresponding intervals, then the interval endpoints are
divided by the household size and, finally, the logarithmic transformation is made.
The data on subjective well-being are changed from discrete values 0,1, . . . ,9,10 to
intervals [0,0.5], [0.5,1.5], . . . , [8.5,9.5], [9.5,10]. Hence, the independent and depen-
dent precise quantities whose relation is investigated by the linear LIR analysis are
the logarithm of monthly net household income per capita in euros and the subjective
well-being on a latent, continuous scale from 0 to 10.

The resulting data frames contain each four columns: two for each of the analyzed
variables, one column for the lower interval endpoint and one for the upper endpoint,
which is the required data format for the linLIR package. Applying the function
idf.create to these data frames, we create so-called interval data frame (idf) ob-
jects, which consist of a list of data frames, each containing the corresponding two
columns of interval endpoints of one variable. For these idf-objects, the linLIR

package provides a summary method as well as a plot method with two options.
Figures 1 and 2 show the data plots of the four data sets we will analyze. As the data
sets consist of roughly 1000 observations each, we used the two-dimensional his-
togram plot by choosing the option typ="hist" in the plot function. As expected,
we notice that the marginal distribution of subjective well-being is concentrated at a
higher level in Finland compared to Bulgaria, but there appear to be no big differ-
ences between men and women within the countries. Moreover, we can see that there
are many observations that are unbounded with respect to X . This is partly caused
by the high number of observations in the lowest and highest income classes. In ad-
dition to this, there is a significant percentage of completely missing income values
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Fig. 1 Histogram plots of the Finnish data sets: women above (n = 967), men below (n = 911). The darker
a rectangle the more observations overlap this rectangle.

(Finland 5–10%, Bulgaria 15–20%), which are represented in the data set as inter-
vals [xi,xi] = [−∞,+∞]. Given the high degree of data imprecision, we can expect to
obtain rather uninformative results from the LIR analyses, reflecting the high uncer-
tainty induced by the interval data. One could argue that using −∞ as lower endpoint
of the range of the logarithmic income (instead of using, e.g., zero) entails too much
unnecessary data uncertainty. However, the results of the LIR analyses are affected
only a little by this, because the LIR method is very robust.

Before conducting the linear LIR analyses, we have to set up the probability
model by selecting the only model parameter ε , and furthermore, we need to choose
the quantile to be considered and the cutoff point β . For simplicity, we here assume
that the imprecise data are correct in the sense that the observed rectangles contain
the correct precise values with probability one, i.e., we assume ε = 0. If we had
concerns about the data quality or if we wanted to account for possibly wrong coars-
ening, a positive ε could be considered in the probability model. This would lead to
more imprecise results of the LIR analyses, reflecting the fact that there is additional
uncertainty. As the residual’s quantile to be minimized we consider the median (i.e.,
p = 0.5) because it can be shown that the robust LIR method yields the most robust
results in this case. Finally, we choose β = 0.8 as cutoff point for the likelihood-based
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Fig. 2 Histogram plots of the Bulgarian data sets: women above (n = 1370), men below (n = 1064). The
darker a rectangle the more observations overlap this rectangle.

confidence regions C f with f ∈F . This choice of β corresponds to an asymptotic
confidence level of (approximately) 50% for each C f (see Subsection 2.2).

The model parameter ε , the LIR settings p and β , as well as the idf-object to
be analyzed are handed over to the s.linlir function, which determines the set U ′

by the introduced algorithm. In the current version of the linLIR package, the first
part of the s.linlir function determines qLRM . After this, the range [b,b] of slope
values for which there may be undominated functions is identified. This is done by
exploiting the representation of the set U ′ as the union of finitely many polygons.
As described in Subsection 3.3, the possible vertices of the polygons are situated at
those values b ∈ R at which the graphs of some of the functions b 7→ zb,i− qLRM
and b 7→ zb,i + qLRM cross each other. The set of all these intersection points can
be formulated similarly to the set B in terms of the endpoints of the interval data,
and thus, it can easily be determined. Considering these values together with the
slopes b = 0, the smallest slope minus 100, and the maximum plus 100, ordering
them by their size and starting from the smallest value, one can find b as the first of
these slopes for which the corresponding set

⋃n−k
j=1[zb,(k+ j)− qLRM, zb,( j) + qLRM] is

not empty. Analogously, starting from the highest values and descending, the upper
endpoint b is identified. If b corresponds to the smallest or b to the highest of the
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considered slopes, respectively, the set U ′ is unbounded. In this case, in the final part
of the s.linlir function, the set of undominated functions is approximated only
over a coarse grid of slope values ranging at most from −109 to 109 (if unbounded
on both sides). Otherwise, U ′ is approximated by determining the corresponding
intercept values over a fine grid across the identified range of slope values. As already
mentioned at the end of Section 3, the current version of the function s.linlir is
not optimized for speed. The computations for the present analysis took about 2 to
10 minutes on a standard desktop computer, most of the time is needed for the first
part of the algorithm, where qLRM is determined.

The s.linlir function returns an object of the class “s.linlir”, a list ob-
ject whose elements include the ranges of slope and intercept values in U ′, a data
frame containing the intercept-slope combinations that represent the approximation
of the set U ′, the bound qLRM , the analyzed data set, the used LIR settings, k and
k, etc. The linLIR package provides a print method and a summary method for
these s.linlir-objects. To visualize the results, there is furthermore an associated
plot method with three options, which are to plot only the LRM regression functions
(typ="lrm"), to plot a random selection of functions out of the set U (typ="func"),
or to plot the entire set U ′ (typ="para"). For Figures 3 and 4 we used the latter plot
type with the default option para.typ="polygon" to display the results of the con-
ducted linear LIR analyses, the black points indicate the LRM regression functions.

−10 −5 0 5 10

−60

−40

−20

0

20

40

60

b

a ●

−10 −5 0 5 10

−60

−40

−20

0

20

40

60

b

a ●

Fig. 3 Sets U ′ for Finland: women on the left (n = 967), men on the right (n = 911).

The sets U ′ resulting from the LIR analyses of the data sets of women and men
in Finland are displayed in Figure 3. Both sets of parameter values are bounded and
have a similar shape, admitting both lines with positive and negative slopes ranging
approximately from −9.5 to 12. For the sample of Bulgarian women, the shape of
the obtained set U ′ is much different, as shown in the left part of Figure 4. In this
particular data set, there are 687 observations [xi,xi]× [yi,yi] such that xi = −∞ and
[yi,yi] 6= R. A line with an arbitrarily high slope will always go through these ob-
servations at the lower end of the income range as long as the intercept is not too
low, and conversely, a line with a negative slope will always intersect these obser-
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Fig. 4 Sets U ′ for Bulgaria: women on the left (n = 1370), men on the right (n = 1064).

vations if the intercept is not too high. As here k + 1 = 673, all lines intersecting
these 687 observations are undominated. Therefore, the obtained set of undominated
functions is unbounded, reflecting the high degree of imprecision inherent in this data
set. Furthermore, we here observe the particular data situation discussed at the end
of Subsection 3.2, where the set U ′ is not closed. (The borders at b = 0 are not in-
cluded.) In the LIR results for the sample of men in Bulgaria, U ′ is not unbounded,
but large, which is to some extent due to the almost 20% of missing income values.
In the right part of Figure 4, we displayed only the middle section of U ′. Interest-
ingly, in this LIR analysis we find three LRM regression lines. These lines can be
characterized geometrically by the fact that the closed bands of width 2qLRM = 4
around them completely include at least k = 543 observations. In the present data
set, there are only 500 observations bounded with respect to X , therefore, only the
band around a horizontal line can contain at least 543 observations. Hence, each of
the three functions has slope 0.

The results of the LIR analyses do not give a clear answer to the question how
an increase in income translates to subjective well-being. However, the obtained re-
sults are more or less in line with current research in this field, as there is no clear
evidence about the direct relationship between these two variables. Some empirical
studies in rich countries found only very weak positive effects of income on sub-
jective well-being, while others even suggested a negative effect at the upper end of
the income distribution (Diener and Biswas-Diener, 2002). These two possibilities
are also admitted by the LIR results for the Finnish data sets, admitting increasing
and decreasing functions. In poorer countries, several studies found a strong positive
effect, reflecting the fact that in these countries an increase in income is more often
used to fulfill basic material needs, clearly improving the individual living standard
(Diener and Biswas-Diener, 2002). The LIR result for the sample of Bulgarian men
admits more extreme slope and intercept values, while the data of the sample of Bul-
garian women are too imprecise to obtain informative results.
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5 Conclusion

In the present work, we considered the LIR approach to regression for imprecisely
observed quantities (see Cattaneo and Wiencierz, 2012, 2011). The result of a LIR
analysis is in general set-valued: it consists of all regression functions that cannot be
excluded on the basis of likelihood inference. These regression functions are said to
be undominated. In this paper, we studied in particular the robust LIR method based
on the residuals’ quantiles, in the special case of simple linear regression with in-
terval data. For this situation, we proved that the set of all the intercept-slope pairs
corresponding to the undominated regression functions is the union of finitely many
polygons, and we gave an exact algorithm for determining this set (i.e., for determin-
ing the set-valued result of the robust LIR method). In particular, when the data are
precise, the algorithm can calculate the (possibly infinite) set of all least median of
squares regression functions, without any assumption about the data being “in general
position”.

We have implemented this exact algorithm as part of the R package linLIR

(Wiencierz, 2013). In the present paper, we analyzed data of the fifth round of the
ESS (Norwegian Social Science Data Services, 2010) to illustrate the implementa-
tion of the robust LIR method in the linLIR package. The obtained results are in line
with current research in the field. In addition to that, we showed that the algorithm
has worst-case time complexity O(n3 logn). In fact, the first part of the algorithm
is related to the first exact algorithm for least median of squares regression, which
has the same (asymptotic) worst-case time complexity (see Steele and Steiger, 1986;
Rousseeuw and Leroy, 1987). This algorithm for least median of squares regression
was then improved (see for example Souvaine and Steele, 1987; Edelsbrunner and
Souvaine, 1990; Carrizosa and Plastria, 1995; Mount et al, 2007) and extended to
multiple linear regression (see for instance Stromberg, 1993; Hawkins, 1993; Watson,
1998; Bernholt, 2005). In future work, we intend to do the same with the algorithm
for the robust LIR method (which can also be generalized to imprecise data other
than intervals). In particular, the first part of our algorithm can be easily extended to
the problem of multiple linear regression by adapting the ideas of Stromberg (1993)
to the case of interval data.

A Proofs

The following lemma gives us a method for writing the union of all
(n

k

)
possible intersections of k out of

n intervals as the union of n− k+ 1 other intervals. It will be used in the proof of Theorem 2, but can be
useful also for other problems, such as constructing an explicit formula for the set of all LRM regression
functions in the general case (i.e., also when the condition at the end of Theorem 1 is not satisfied).

Lemma 1 If w1, . . . ,wn,w1, . . . ,wn ∈ R with wi ≤ wi for all i ∈ {1, . . . ,n}, then for each k ∈ {1, . . . ,n},

⋃
I⊆{1,...,n} : |I |=k

⋂
i∈I

[wi,wi] =
n⋃

j=k

[w( j),w( j−k+1)],

where for each j ∈ {1, . . . ,n}, as usual, w( j) and w( j) denote the jth smallest value among w1, . . . ,wn and
among w1, . . . ,wn, respectively.
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This lemma can be proved as follows. Assume without loss of generality that w1 ≤ ·· · ≤ wn (i.e.,
w( j) =w j), and for all j, j′ ∈{1, . . . ,n}with j≤ j′, let w j: j′ denote the jth smallest value among w1, . . . ,w j′

(hence, in particular, w( j) = w j:n). Then, for each set I ⊆ {1, . . . ,n} with cardinality |I |= k,

⋂
i∈I

[wi,wi] =

[
max
i∈I

wi,min
i∈I

wi

]
=

[
wmaxI ,min

i∈I
wi

]
⊆ [wmaxI ,wmaxI−k+1:maxI ],

and obviously maxI ∈ {k, . . . ,n}. Furthermore, for each j ∈ {k, . . . ,n}, there are at most j− k indices
i ∈ {1, . . . ,n} such that wi < w( j−k+1), and thus there is a set I j ⊆ {1, . . . , j} with cardinality |I j| = k
such that wi ≥ w( j−k+1) for all i ∈I j . Therefore,

n⋃
j=k

[w( j),w( j−k+1)]⊆
n⋃

j=k

[
max
i∈I j

wi,min
i∈I j

wi

]
=

n⋃
j=k

⋂
i∈I j

[wi,wi]⊆
⋃

I⊆{1,...,n} : |I |=k

⋂
i∈I

[wi,wi]

⊆
⋃

I⊆{1,...,n} : |I |=k

[wmaxI ,wmaxI−k+1:maxI ] =
n⋃

j=k

[w j,w j−k+1: j].

Hence, in order to complete the proof of the lemma, it suffices to show that the first and last unions
of n− k + 1 intervals in the above expression are equal. To this goal, we first show that for each j ∈
{k, . . . ,n−1},

[w j,w j−k+1: j]∪ [w j+1,w j+1−k+1: j+1] = [w j,w( j−k+1)]∪ [w j+1,w j+1−k+1: j+1]. (2)

Since w( j−k+1) ≤ w j−k+1: j always holds, (2) could be wrong only if w( j−k+1) < w j−k+1: j , which can be
the case only if there is an index i ∈ { j+1, . . . ,n} such that wi ≤ w( j−k+1), but then

w j ≤ w j+1 ≤ wi ≤ wi ≤ w( j−k+1) < w j−k+1: j ≤ w j+1−k+1: j+1,

and thus both unions in (2) are equal to the interval [w j,w j+1−k+1: j+1]. Therefore, using (2) for each j
from k to n−1, we obtain

n⋃
j=k

[w j,w j−k+1: j] =

(
n−1⋃
j=k

[w j,w( j−k+1)]

)
∪ [wn,wn−k+1:n]

=

(
n−1⋃
j=k

[w( j),w( j−k+1)]

)
∪ [w(n),w(n−k+1)] =

n⋃
j=k

[w( j),w( j−k+1)].

A.1 Proof of Theorem 1

As noted in Subsection 2.2, for each linear function f ∈ F , we have r f ,(k) < +∞ if and only if either
f is not constant and there are at least k bounded imprecise observations, or f is constant and there are
at least k imprecise observations [xi,xi]× [yi,yi] such that the interval [yi,yi] is bounded. Therefore, if
there are less than k imprecise observations [xi,xi]× [yi,yi] such that the interval [yi,yi] is bounded, then
r f ,(k) = +∞ for all f ∈F , which proves the first part of the theorem. Otherwise, if there are at least k
imprecise observations [xi,xi]× [yi,yi] such that the interval [yi,yi] is bounded, as we assume from now on,
then r f ,(k) <+∞ at least for the constant functions f ∈F , which implies qLRM <+∞.

For each function fa,b ∈F and each imprecise observation [xi,xi]× [yi,yi],

zb,i = inf
(x,y)∈[xi ,xi ]×[yi ,yi]

(y−bx), (3)

zb,i = sup
(x,y)∈[xi ,xi ]×[yi ,yi]

(y−bx), (4)

and therefore

r fa,b ,i = max

{
sup

(x,y)∈[xi ,xi ]×[yi ,yi ]

(y−a−bx), sup
(x,y)∈[xi ,xi ]×[yi ,yi ]

(a+bx− y)

}
= max{zb,i−a, a− zb,i}.
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Hence, the kth smallest upper residual of fa,b is

r fa,b ,(k) = min
I⊆{1,...,n} : |I |=k

max
i∈I

max{zb,i−a, a− zb,i}= min
I⊆{1,...,n} : |I |=k

max
{

max
i∈I

zb,i−a, a−min
i∈I

zb,i

}
.

Now, for each set I ⊆{1, . . . ,n}with cardinality |I |= k, there is a j ∈ {1, . . . ,n−k+1} such that zb,( j) =
mini∈I zb,i, and in this case, since zb,i ≥ zb,( j) for all i ∈I , the smallest possible value of maxi∈I zb,i is
zb,[ j]. Thus we obtain

r fa,b ,(k) = min
j∈{1,...,n−k+1}

max{zb,[ j]−a, a− zb,( j)}.

Clearly, for each b ∈ R and j ∈ {1, . . . ,n− k+1} such that the interval [zb,( j),zb,[ j]] is bounded, the max-
imum of zb,[ j]− a and a− zb,( j) is uniquely minimized by the interval center a = 1/2(zb,( j) + zb,[ j]). This
implies

qLRM = inf
(a,b)∈R2

r fa,b ,(k) =
1
2 inf
(b, j)∈R×{1,...,n−k+1}

(zb,[ j]− zb,( j)),

{ f ∈F : r f ,(k) = qLRM}

=

{
fa′,b′ : (b′, j′) ∈ argmin

(b, j)∈R×{1,...,n−k+1}
(zb,[ j]− zb,( j)) and a′ = 1

2 (zb′,( j′)+ zb′,[ j′])

}
.

Therefore, in order to complete the proof of the theorem, it suffices to show that the set

M :=

{
b′ : (a′,b′) ∈ argmin

(a,b)∈R2
r fa,b,(k)

}
=

{
b′ : (b′, j′) ∈ argmin

(b, j)∈R×{1,...,n−k+1}
(zb,[ j]− zb,( j))

}

intersects B (i.e., M ∩B 6=∅), that M is infinite when M * B, and that M ⊆B when the condition at
the end of the theorem is satisfied.

For each set I ⊆ {1, . . . ,n} with cardinality |I | = k, let gI be the function (a,b) 7→ maxi∈I r fa,b ,i

on R2. Then, for all a,b ∈ R,
r fa,b ,(k) = min

I⊆{1,...,n} : |I |=k
gI (a,b).

Let S be the set of all sets I ⊆ {1, . . . ,n} with cardinality |I | = k and such that inf(a,b)∈R2 gI (a,b) =
qLRM . Then, defining for each I ∈S ,

MI :=

{
b′ : (a′,b′) ∈ argmin

(a,b)∈R2
gI (a,b)

}
,

we obtain M =
⋃

I∈S MI . Hence, in order to complete the proof of the theorem, it suffices to show for
each I ∈S , that the set MI intersects B (i.e., MI ∩B 6=∅), that MI is infinite when MI *B, and
that MI ⊆B when the condition at the end of the theorem is satisfied.

Let I ∈ S , and consider first the case with I * D . In this case, there is an i ∈ I such that the
rectangle [xi,xi]× [yi,yi] is unbounded, and since qLRM <+∞, there are a,b ∈R such that r fa,b,i <+∞. As
noted in Subsection 2.2, this implies that the interval [yi,yi] is unbounded, and then r fa,b ,i <+∞ if and only
if the function fa,b is constant. That is, gI (a,b)<+∞ if and only if b = 0, and therefore MI = {0} ⊆B.

Consider now the case with I ⊆D (i.e., the rectangle [xi,xi]× [yi,yi] is bounded for all i∈I ), which
implies in particular |D | ≥ k. In this case,

gI (a,b) = max
i∈I

max
(x,y)∈{xi ,xi}×{yi ,yi}

|y−a−bx|

for all a,b ∈ R, since for a bounded imprecise observation [xi,xi]× [yi,yi], the upper residual r fa,b ,i is
the maximum of the four residuals corresponding to the vertices of the rectangle [xi,xi]× [yi,yi]. The
Existence Theorem of Cheney (1982, page 20) implies then that argmin(a,b)∈R2 gI (a,b) is not empty
(i.e., MI 6=∅). Let thus (a′,b′) ∈ argmin(a,b)∈R2 gI (a,b) (hence, b′ ∈MI ). From the Characterization
Theorem of Cheney (1982, page 35) it follows that there are (x,y),(x′,y′) ∈

⋃
i∈I {xi,xi}×{yi,yi} such

that either x 6= x′ and both points (x,y),(x′,y′) lie on the graph of one of the two functions fa′+qLRM ,b′ and
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fa′−qLRM ,b′ , or x = x′ and the point (x,y) lies on the graph of the function fa′+qLRM ,b′ , while the point (x′,y′)
lies on the graph of the function fa′−qLRM ,b′ .

All the (bounded) rectangles [xi,xi]× [yi,yi] with i ∈ I are contained in the closed band B fa′ ,b′ ,qLRM

of (vertical) width 2qLRM around the graph of the function fa′,b′ , and the points (x,y),(x′,y′) are vertices
of these rectangles lying on the border of the band B fa′ ,b′ ,qLRM . If x 6= x′, then (x,y) and (x′,y′) lie on the
same border of B fa′ ,b′ ,qLRM , and thus determine its slope

b′ =
y− y′

x− x′
.

It can be easily checked that the set B contains all the slopes that can be obtained in this way by the
vertices of the bounded imprecise observations [xi,xi]× [yi,yi]. Therefore, if x 6= x′, then b′ ∈B.

Assume now that b′ /∈B. In order to complete the proof of the theorem, it suffices to show that in this
case the set MI is infinite and intersects B, and that the condition at the end of the theorem cannot be
satisfied. The assumption b′ /∈B implies x = x′. Hence, the points (x,y) and (x′,y′) are two vertices of two
(bounded) rectangles [xi,xi]× [yi,yi] and [x j,x j]× [y j,y j] (with i, j ∈I ), and lie on the upper and on the
lower borders of the band B fa′ ,b′ ,qLRM , respectively. If either x 6= xi and x′ 6= x j , or x 6= xi and x′ 6= x j , then the
intervals [xi,xi] and [x j,x j] are proper (i.e., they contain more than one value) and extend on the same side
of x = x′, but this would imply b′ = 0 ∈B, because the two rectangles [xi,xi]× [yi,yi] and [x j,x j]× [y j,y j]
must be contained in the band B fa′ ,b′ ,qLRM . Therefore, xi = x j or xi = x j , and max{yi,y j}−min{yi,y j} =
y−y′ = 2qLRM . That is, one of the two pairs (i, j),( j, i)∈I 2 ⊆D2 satisfies the premise of the condition at
the end of the theorem. Now, if [yi,yi]⊆ [y j,y j], then the interval [x j,x j] must be degenerate (i.e., x j = x j),
because otherwise we would have b′ = 0∈B, since the rectangle [x j,x j]× [y j,y j] must be contained in the
band B fa′ ,b′ ,qLRM . Analogously, if [y j,y j]⊆ [yi,yi], then xi = xi. Hence, if the two intervals [yi,yi] and [y j,y j]

are nested, then one of the two pairs (i, i),( j, j) ∈ D2 satisfies the premise of the condition at the end of
the theorem. So this condition is contradicted by at least one of the four pairs (i, j),( j, i),(i, i),( j, j) ∈D2.

In order to complete the proof of the theorem, it remains to show that the set MI is infinite and
intersects B. We have that b ∈MI if and only if there is an a ∈ R such that the closed band B fa,b ,qLRM
of (vertical) width 2qLRM around the graph of the function fa,b contains the 4k vertices of the rectangles
[xi,xi]× [yi,yi] with i ∈I . For each b ∈ R, since the two vertices (x,y),(x′,y′) satisfy x = x′ and y− y′ =
2qLRM , the band B fa,b ,qLRM can contain the 4k vertices only if a = ab := 1/2(y′+ y)− bx (i.e., only if the
midpoint of (x,y) and (x′,y′) is contained in the graph of the linear function fa,b). Now, for each vertex
(x′′,y′′), the set of all b ∈ R such that the band B fab ,b

,qLRM contains (x′′,y′′) is the closed interval

Bx′′ ,y′′ =



[
y′− y′′

x′− x′′
,

y− y′′

x− x′′

]
if x′′ < x = x′,

R if x′′ = x = x′,[
y′′− y
x′′− x

,
y′′− y′

x′′− x′

]
if x′′ > x = x′,

where the second case is implied by the fact that Bx′′ ,y′′ is not empty (since b′ ∈MI ⊆Bx′′ ,y′′ ), while in
the other two cases the endpoints of Bx′′ ,y′′ are the slopes b determined by the pairs of points (x,y),(x′′,y′′)
or (x′,y′),(x′′,y′′) lying on the same border of B fab ,b

,qLRM . Therefore,

MI =
⋂

i∈I

⋂
(x′′,y′′)∈{xi ,xi}×{yi ,yi}

Bx′′ ,y′′

is a (nonempty) closed interval, which is either R or it is bounded. When MI =R, obviously it is infinite
and intersects B. Otherwise, MI is a bounded interval whose endpoints are elements of B, since they
are slopes b determined by a pair of vertices lying on the same border of B fab ,b

,qLRM . Hence, also in this
case MI intersects B and is infinite, since b′ /∈B is an interior point of the interval MI .
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A.2 Proof of Theorem 2

For each function fa,b ∈F and each imprecise observation [xi,xi]× [yi,yi], using (3) and (4), we obtain
that r fa,b ,i ≤ qLRM if and only if the set{

y− fa,b(x) : (x,y) ∈ [xi,xi]× [yi,yi]
}
= [zb,i−a, zb,i−a]

intersects the interval [−qLRM ,qLRM ]. That is, r fa,b ,i ≤ qLRM if and only if a ∈ [zb,i− qLRM , zb,i + qLRM ].
Hence, r fa,b,(k+1) ≤ qLRM if and only if there is a set I ⊆ {1, . . . ,n} such that |I |= k+1 and a ∈ [zb,i−
qLRM , zb,i +qLRM ] for all i ∈I . That is, using Lemma 1 with k = k+1, we obtain that r fa,b ,(k+1) ≤ qLRM

if and only if a lies in the set

⋃
I⊆{1,...,n} : |I |=k+1

⋂
i∈I

[zb,i−qLRM , zb,i +qLRM ] =
n⋃

j=k+1

[zb,( j)−qLRM , zb,( j−k)+qLRM ]

=
n−k⋃
j=1

[zb,(k+ j)−qLRM , zb,( j)+qLRM ].

Therefore,

U = { fa,b ∈F : r fa,b ,(k+1) ≤ qLRM}=

{
fa,b : b ∈ R and a ∈

n−k⋃
j=1

[zb,(k+ j)−qLRM , zb,( j)+qLRM ]

}
.
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